Transcript ppt - SEAS
ESE370:
Circuit-Level
Modeling, Design, and Optimization
for Digital Systems
Day 5: September 17, 2010
Restoration
1
Penn ESE370 Fall2010 -- DeHon
Today
• How do we make sure logic is robust
– Can assemble into any (feed forward)
graph
– Can tolerate loss and noise
– ….while maintaining digital abstraction
2
Penn ESE370 Fall2010 -- DeHon
Outline
•
•
•
•
•
•
Two problems
Cascade failure
Restoration
Transfer Curves
Noise Margins
Non-linear
3
Penn ESE370 Fall2010 -- DeHon
Wire Crossings and Shorts
Wires connected/shorted
Wires not connected
4
Penn ESE370 Fall2010 -- DeHon
Two Problems
1. Output not go to rail
2. Signals may be perturbed by noise
5
Penn ESE370 Fall2010 -- DeHon
Output not go to Rail
• CMOS, capacitive load
– Mostly doesn’t have problem
• CMOS, resistive load?
– Igd≠0 ?
– How close to rail do I need to get?
6
Penn ESE370 Fall2010 -- DeHon
Wire Resistance
7
Penn ESE370 Fall2010 -- DeHon
Wire Resistance
R
Penn ESE370 Fall2010 -- DeHon
L
A
8
Wire Resistance
• Sanity check
– Wire twice as long = resistors in series
– Wire twice as wide = resistors in parallel
R
Penn ESE370 Fall2010 -- DeHon
L
A
9
Wire Resistance
• 1000 mm long wire?
• 1 cm long wire?
• Length of die side?
10
Penn ESE370 Fall2010 -- DeHon
Die Sizes
Processor
Die Size
Transistor Count
Process
Core 2 Extreme X6800
143 mm²
291 Mio.
65 nm
Core 2 Duo E6700 143 mm²
291 Mio.
65 nm
Core 2 Duo E6600 143 mm²
291 Mio.
65 nm
Core 2 Duo E6400 111 mm²
167 Mio.
65 nm
Core 2 Duo E6300 111 mm²
167 Mio.
65 nm
Pentium D 900
280 mm²
376 Mio.
65 nm
Athlon 64 FX-62
230 mm²
227 Mio.
90 nm
Athlon 64 5000+
183 mm²
154 Mio.
90 nm
http://www.tomshardware.com/reviews/core2-duo-knocks-athlon-64,1282-4.html
11
Penn ESE370 Fall2010 -- DeHon
Implications
• What does the circuit really look like for
an inverter in the middle of the chip?
12
Penn ESE370 Fall2010 -- DeHon
Implications
• What does the circuit really look like for
an inverter in the middle of the chip?
13
Penn ESE370 Fall2010 -- DeHon
IR-Drop
• Since interconnect is resistive and gates
pull current off the supply interconnect
– The Vdd seen by a gate is lower than the
supply Voltage by
• Vdrop=Isupply x Rdistribute
– Two gates in different locations
• See different Rdistribute
• Therefore, see different Vdrop
14
Penn ESE370 Fall2010 -- DeHon
Output not go to Rail
• CMOS, capacitive load
– Mostly doesn’t have problem
• CMOS, resistive load
• Due to IR drop, “rails” for two
communicating gates may not match
15
Penn ESE370 Fall2010 -- DeHon
Two Problems
1. Output not go to rail
– Is this tolerable?
2. Signals may be perturbed by noise
– Voltage seen at input to a gate may not
lower/higher than input voltage
16
Penn ESE370 Fall2010 -- DeHon
Noise Sources?
• What did we see in lab when zoomed in
on signal transition?
• Signal coupling
– Crosstalk
• Leakage
• Ionizing particles
• IR-drop in signal wiring
17
Penn ESE370 Fall2010 -- DeHon
Two Problems
1. Output not go to rail
– Is this tolerable?
2. Signals may be perturbed by noise
– Voltage seen at input to a gate may not
lower/higher than input voltage
• What happens to degraded signals?
18
Penn ESE370 Fall2010 -- DeHon
Preclass
• All 1’s logical output?
19
Penn ESE370 Fall2010 -- DeHon
Preclass
• 1.0 inputs, gate: o=1-AB output
voltage?
20
Penn ESE370 Fall2010 -- DeHon
Preclass
• 0.95 inputs, gate: o=1-AB output
voltage?
21
Penn ESE370 Fall2010 -- DeHon
Degradation
• Cannot have signal degrade across
gates
• Want to be able to cascade arbitrary set
of gates
22
Penn ESE370 Fall2010 -- DeHon
Gate Creed
• Gates should leave the signal “better”
than they found it
– “better” closer to the rails
23
Penn ESE370 Fall2010 -- DeHon
Restoration Discipline
• Define legal inputs
– Gate works if Vin “close enough” to the rail
• Restoration
– Gate produces Vout “closer to rail”
• Tolerates some drop between out and in
• Call this our “Noise Margin”
24
Penn ESE370 Fall2010 -- DeHon
Noise Margin
• Voh – output high
• Vol – output low
• Vih – input high
• Vil – input low
• NMh = Voh-Vih
• NMl = Vol-Vil
Penn ESE370 Fall2010 -- DeHon
One mechanism,
addresses numerous
noise sources.
25
Restoration Discipline
• Define legal inputs
– Gate works if Vin “close enough” to the rail
– Vin > Vih or Vin < Vil
• Restoration
– Gate produces Vout “closer to rail”
• Vout < Vol or Vout > Voh
26
Penn ESE370 Fall2010 -- DeHon
Restoring Transfer Function
27
Penn ESE370 Fall2010 -- DeHon
Restoring Transfer Function
For multi-input functions,
hold non-controlling inputs
at Vil, Vih respectively.
(relate preclass exercise)
28
Penn ESE370 Fall2010 -- DeHon
Ideal Transfer Function
29
Penn ESE370 Fall2010 -- DeHon
Linear Transfer Function?
• O=Vdd-A
Noise Margin?
30
Penn ESE370 Fall2010 -- DeHon
Non-linearity
• Need non-linearity in transfer function
• Could not have built restoring gates with
– R, L, C circuit
– Linear elements
31
Penn ESE370 Fall2010 -- DeHon
Transistor Non-Linearity
32
Penn ESE370 Fall2010 -- DeHon
All Gates
• If hope to assemble design from
collection of gates,
– Voltage levels must be consistent and
supported across all gates
Vol MAX g.Vol
Vil MIN g.Vil
Voh MIN g.Voh
Vih MAX g.Vih
gG
gG
Penn ESE370 Fall2010 -- DeHon
gG
gG
33
Admin
• HW2 is out
• Monday in Ketterer
– Lab combo
• Wednesday back here
34
Penn ESE370 Fall2010 -- DeHon
Big Idea
• Need robust logic
– Can assemble into any (feed forward)
graph
– Can tolerate loss and noise
– ….while maintaining digital abstraction
• Restoration and noise margins
– Every gate makes signal “better”
– Design level of noise tolerance
35
Penn ESE370 Fall2010 -- DeHon