Transcript ppt - SEAS

ESE370:
Circuit-Level
Modeling, Design, and Optimization
for Digital Systems
Day 12: October 4, 2010
Layout and Area
Penn ESE370 Fall 2010 -- Townley (DeHon)
Today
• Layout
– Transistors
– Gates
• Design rules
• Standard cells
2
Penn ESE370 Fall 2010 -- Townley (DeHon)
Transistor
Side view
Perspective view
3
Penn ESE370 Fall 2010 -- Townley (DeHon)
Layout
• Sizing &
positioning of
transistors
– Designer controls
W,L
– tox fixed
• Sometimes
thick/thin oxide
“flavors”
4
Penn ESE370 Fall 2010 -- Townley (DeHon)
NMOS Geometry
L
W
Top view
Perspective view
5
Penn ESE370 Fall 2010 -- Townley (DeHon)
NMOS Geometry
L
S
G
• Color scheme
D
– Red: gate
– Green: source and drain
areas (n type)
W
• Where is tox?
Top view
6
Penn ESE370 Fall 2010 -- Townley (DeHon)
tox
• Transistors built by depositing materials
– Constant rate of deposition (nm/min)
– Time controls tox
• Oxides across entire chip deposited at same
time
– Same interval
– So, thickness is constant
– Process engineer sets value to maximize:
• Yield
• Performance
7
Penn ESE370 Fall 2010 -- Townley (DeHon)
NMOS vs PMOS
• Mostly talked about NMOS so far
– PMOS: “opposite” in some sense
– NMOS built on p substrate, PMOS built on n
substrate
– Name refers to when channel is inverted
Rabaey text, Fig 2.1
8
Penn ESE370 Fall 2010 -- Townley (DeHon)
PMOS Geometry
L
S
G
• Color scheme
D
W
– Red: gate
– Orange: source and drain
areas (p type)
– Green: n well
• NMOS built on p wafer
n well
– Must add n material to
build PMOS
9
Penn ESE370 Fall 2010 -- Townley (DeHon)
Body Contact
gate
• “Fourth terminal”
• Needed to set
voltage around
device
– PMOS: Vb = Vdd
– NMOS: Vb = GND
• At right: PMOS
(orange) with body
contact (dark green)
cross section
drain
well
source
Metal
Metal
n+
p+
polysilicon
SiO2
Metal
p+
n- well
p- substrate
Side view: R.R. Harrison,
ECE 5720 notes (Utah)
Penn ESE370 Fall 2010 -- Townley (DeHon)
10
Interconnect
• How to connect transistors
– Different layers of metal Intermediate
layers
• “Contact” - metal to transistor
• “Via” - metal to metal
Penn ESE370 Fall 2010 -- Townley (DeHon)
Rabaey text, Fig 2.7k
11
Interconnect Cross Section
Penn ESE370 Fall 2010 -- Townley (DeHon)
ITRS 2007
12
Masks
• Define areas want to see in layer
– Think of “stencil” for material deposition
• Use photoresist (PR) to form the “stencil”
– Expose PR through mask
– PR dissolves in exposed area
– Material is deposited
• Only “sticks” in area w/ dissolved PR
13
Penn ESE370 Fall 2010 -- Townley (DeHon)
Masking Process
Mask
Silicon wafer
• Goal: draw a shape on the substrate
– Simplest example: draw a rectangle
14
Penn ESE370 Fall 2010 -- Townley (DeHon)
Silicon wafer
Masking Process
Mask
photoresist
• First: deposit photoresist
15
Penn ESE370 Fall 2010 -- Townley (DeHon)
Masking Process
• Expose through mask
– UV light
16
Penn ESE370 Fall 2010 -- Townley (DeHon)
Masking Process
• Remove mask and
develop PR
– Exposed area
dissolves
– This is “positive
photoresist”
• Negative photoresist?
17
Penn ESE370 Fall 2010 -- Townley (DeHon)
Masking Process
• Deposit metal through PR
window
– Then dissolve remaining PR
• Why not just use mask?
– Masks are expensive
– Shine light through mask to
etch PR
– Can reuse mask
18
Penn ESE370 Fall 2010 -- Townley (DeHon)
Logic Gates
• How to build?
– Connect NMOS,
PMOS using
metal
• HW4, part 6:
reverse engineer
layouts into gates
19
Penn ESE370 Fall 2010 -- Townley (DeHon)
Inverter Layout Example
20
Penn ESE370 Fall 2010 -- Townley (DeHon)
Inverter Layout Example
• Start with
PMOS, NMOS
transistors
• Space for
interconnect
21
Penn ESE370 Fall 2010 -- Townley (DeHon)
Inverter Layout Example
22
Penn ESE370 Fall 2010 -- Townley (DeHon)
Inverter Layout Example
• Add body
contacts
• Connect gates
of transistors
23
Penn ESE370 Fall 2010 -- Townley (DeHon)
Inverter Layout Example
24
Penn ESE370 Fall 2010 -- Townley (DeHon)
Inverter Layout Example
• Add contacts to
source, drain,
gate, body
• Connect using
metal (blue)
25
Penn ESE370 Fall 2010 -- Townley (DeHon)
Design Rules
• Why not adjacent
transistors?
– Plenty of empty
space
– If area is money,
pack in as much as
possible
• Recall: processing
imprecise
– Margin of error for
process variation
26
Penn ESE370 Fall 2010 -- Townley (DeHon)
Design Rules
• Contract between process engineer &
designer
– Minimum width/spacing
– Can be (often are) process specific
• Lambda rules: scalable design rules
– In terms of  = 0.5 Lmin
– Can migrate designs from similar process
– Limited scope: 45nm process != 1m
27
Penn ESE370 Fall 2010 -- Townley (DeHon)
Design Rules:
Some Examples
2


2
3
2
1.5
6
6
Legend
Penn ESE370 Fall 2010 -- Townley (DeHon)
contact
n doping
metal 1
gate
via
p doping
metal 2
Layout Revisited
• How to
“decode” circuit
from layout?
29
Penn ESE370 Fall 2010 -- Townley (DeHon)
Layout to Circuit
• 1. Identify
transistors
30
Penn ESE370 Fall
Fall2010
2010----DeHon
Townley (DeHon)
Layout to Circuit
• 2. Add wires
31
Penn ESE370 Fall 2010 -- Townley (DeHon)
Layout to Circuit
• 2. Add wires
32
Penn ESE370 Fall 2010 -- Townley (DeHon)
Layout to Circuit
• 2. Add wires
33
Penn ESE370 Fall 2010 -- Townley (DeHon)
Layout to Circuit
• 2. Add wires
34
Penn ESE370 Fall 2010 -- Townley (DeHon)
Layout #2 (practice)
35
Penn ESE370 Fall 2010 -- Townley (DeHon)
Standard Cells
• Lay out gates so that heights match
– Rows of adjacent cells
– Standardized sizes
• Motivation: automated place and route
– EDA tools convert HDL to layout
36
Penn ESE370 Fall 2010 -- Townley (DeHon)
Standard Cell Area
All cells
uniform
height
inv nand3
Width of
channel
determined
by routing
Cell area
Identify the full custom and standard cell regions on 386DX die
http://microscope.fsu.edu/chipshots/intel/386dxlarge.html
Penn ESE370 Fall 2010 -- Townley (DeHon)
Admin
• HW4 – slight update online to clarify Q1
• HW3 – trickier than intended in places
– Our guess is 1, 2, maybe 7
– (let us know if that’s not where)
– Office hours to clear up any remaining
confusion?
• Andre back for Wed. Lecture
Penn ESE370 Fall 2010 -- Townley (DeHon)
Big Idea
• Layouts are physical realization of
circuit
– Geometry tradeoff
• Can decrease spacing at the cost of yield
• Design rules
• Can go from circuit to layout or layout to
circuit by inspection
39
Penn ESE370 Fall 2010 -- Townley (DeHon)