PPT - Snowmass 2001
Download
Report
Transcript PPT - Snowmass 2001
Si Pixel Tracking Detectors
•Introduction
•Sensor
•Readout Chip
•Mechanical Issues
•Performance
-Diamond
36 MPix
150x150mm 2
HISTORICAL
Vertex
High Radiation Standresolution multi hardness alone
Tracking
Trig
80’s- CCD detectors- SLD
Si - diode
90’s- Si - diode- Omega2/3,DELPHI
Si - diodeSSC/LHC
Diamond
2000’s Si - diode/
LHC/BTEV
Diamond
X
x
X
X
x
X
X
x
X
X
x
X
X
x
X
x
X
X
X
X
Pixel Tracker
& Trigger
• Pixel Size
• Occupancy
• Charge Sharing
• S/N
• ExB Drift
• Radiation Damage
LHC - 1014 /cm2/yr
Track Cluster
Single Track
Charge Sharing
Vertex Resolution
(20-30)mm IP
Radiation Damage Effects
•Increase in volume leakage current.
•Build-up of effective p-doping (bulk inversion).
•Charge trapping.
•Reverse Annealing- inactive defects become active,
increasing effective p-doping. (T-dependent)
Basic Diode Structure
•.
BASIC PACKAGE
•Sensor Bump Bonded to Readout Chip
•In or Pb/Sn for Bumps
•Wafer Thinning
•Dicing
•Yield
Sensors & Isolation
• Guard Ring Design
p-stop, p-spray
• Radiation Damage
-Bulk Damage
-Depletion Voltage
• Type Inversion
• Self Annealing/Thermal
• Diamond Detectors
-Radiation Hard
-Simple Architecture
Electrode
Diamond
Electrode
CVD DIAMOND
Single Ring p-stop Design
n+
n- p+
READOUT CHIP (CMOS)
•Radiation Hard Architecture (SOI)
•Military/ Space Science
•Analoque/Digital
PSI Readout Chip
•SEU, Latchup (10-6 -10-10)
•DMILL .80mm Bi-CMOS
•IBM .25mm <-----
Thin Si Layer
Oxide
Si Substrate
BUMP and FLIP-CHIP Interconnect
•Choice of Indium or Solder (PbSn)
•Indium
-Evaporation, 2 bumps, Allignment
-High Yield
•Electroplated Solder
-Reflow techniques
~180oC. Flux, Self Alligning
-Complex UBM (UnderBump Metalization)
-Excellent Electrical and Mechanical
Contact
Readout Chip
Sensor
Reflow and Wick-over
Pseudo -TRIGGER PAD
8.0mm
Detectors
TBM
52 x 53 array
150 x 150mm
Clk
10.5mm
Optical
links
FEC
FED
DOUBLE COLUMN PERIPHERY
TIME STAMP and READOUT BUS
I2C DACS
CONTROL and INTERFACE BLOCK
Power Supply / Clock Pads
400K transistors
~30%yield
TRIGGER
T BLK
Readout Amplifier
Transmission
Line Drivers
SLOW CONTROL
UPLOADS 40MHz I2C
Fast Trigger
DATA
FAST TRIGGER OUT (L3)
MECHANICAL
• Low Mass Support Structures
- Be , C-Fiber
• Wafer Thinning
-.25 mm lithography on 8”800mm
• Dicing Accuracy and Placement
• Radiation Hard Glues/Epoxies
COOLING
• Cooling (KWs per Detector)
- (10-20) oC
– Flurocarbons (high mass)
– Evaporative Cooling(low mass)
• Thermal Expansion
High Density Interconnects
VHDI
Sensor
ROC
Bump Bonds
HDI
Wire Bonds
Silicon Plate
Be Panel
PERFORMANCE (Si & Diamond in CERN Test Beam)
Charge Sharing
Vienna Repeater
Y
Row
X
Z, B
}
Beam
8mm
ROC, PSI36:
11 double columns
x 30 rows
20o
Double
Column
Pixels
150 x150 mm2
D:\Transfer from Bob\Pictures\Test Beam Hardware\Geometry Pixels.ppt
PERFORMANCE (cont)
Si 25000e/mip
Dia 9000e/mip
2000e noise
2000e noise
99% efficiency
95% efficiency
Charge sharing vs position
Pixels at 20o to beam
= 14 mm
over pixel
150 mm
150 mm
150 mm / 12 = 43 mm
Pixels normal to beam
Charge sharing vs position
= 46 mm
over pixel
CONCLUSIONS
• Si Pixel Detectors- a Great Challenge!
• Many Difficult Technologies to Master.
• Much Will be Solved in LHC/BTeV era.
• HEP Must Learn to Deal with High Development Costs.
• Trigger Possibilities Abundant.
• Diamond Detectors Feasible.
X-Ray Crystalography