Transcript ppt - SEAS

ESE370:
Circuit-Level
Modeling, Design, and Optimization
for Digital Systems
Day 10: September 26, 2012
MOS Transistor Basics
1
Penn ESE370 Fall2012 -- DeHon
Today
• MOS Transistor Topology
• Threshold
• Operating Regions
– Resistive
– Saturation
– Velocity Saturation
– Subthreshold
2
Penn ESE370 Fall2012 -- DeHon
Last Time
3
Penn ESE370 Fall2012 -- DeHon
Refinement
• Depletion region  excess carriers depleted
4
Penn ESE370 Fall2012 -- DeHon
Body Contact
• Fourth terminal
• Also effects fields
• Usually common across transistors
5
Penn ESE370 Fall2012 -- DeHon
No Field
• VGS=0, VDS=0
6
Penn ESE370 Fall2012 -- DeHon
Apply VGS>0
• Accumulate negative charge
– Repel holes (fill holes)
++++++++
- - - - - - - - -
7
Penn ESE370 Fall2012 -- DeHon
Channel Evolution
Increasing Vgs
8
Penn ESE370 Fall2012 -- DeHon
Gate Capacitance
Changes based on operating region.
Happy if you treat as parallel plate
Capacitor for HW4.
9
Penn ESE370 Fall2012 -- DeHon
Inversion
• Surface builds electrons
– Inverts to n-type
– Draws electrons from n+ source
10
Penn ESE370 Fall2012 -- DeHon
Threshold
• Voltage where strong inversion occurs
N A 
 threshold voltage
F  T ln 
– Around 2ϕF
 ni 
– Engineer by controlling doping (NA)

11
Penn ESE370 Fall2012 -- DeHon
Resistive Region
COX 
• VGS>VT, VDS small
OX
tOX

IDS
2 
W 
VDS
 nCOX  VGS VT VDS 

 L 
2 
12
Penn ESE370 Fall2012 -- DeHon
Resistive Region
COX 
• VGS>VT, VDS small
OX
tOX
• VGS fixed  looks like resistor
– Current linear in VDS

IDS
2 
W 
VDS
 nCOX  VGS VT VDS 

 L 
2 
13
Penn ESE370 Fall2012 -- DeHon
Linear (Resistive) Region
14
Penn ESE370 Fall2012 -- DeHon
Linear (Resistive) Region
Blue curve
marks transition
from Linear
to Saturation
15
Penn ESE370 Fall2012 -- DeHon
Dimensions
• Channel Length (L)
• Channel Width (W)
• Oxide Thickness (Tox)
16
Penn ESE370 Fall2012 -- DeHon
Preclass
• Ids for identical transistors in parallel?
17
Penn ESE370 Fall2012 -- DeHon
Preclass
• Ids for identical transistors in series?
– (Vds small)
18
Penn ESE370 Fall2012 -- DeHon
S
Transistor Strength (W/L)
COX 
OX
tOX
IDS
2 
W 
VDS
 nCOX  VGS VT VDS 

 L 
2 
19
Penn ESE370 Fall2012 -- DeHon
D
S
D
Transistor Strength (W/L)
• Shape dependence match Resistance
intuition
R
– Wider = parallel resistors  decrease R
– Longer = series resistors  increase R
IDS

L
2 
W 
VDS
 nCOX  VGS VT VDS 

 L  
2 
20
Penn ESE370 Fall2012 -- DeHon
A
Ldrawn vs. Leffective
• Doping not perfectly straight
• Spreads under gate
• Effective L smaller than draw gate width
21
Penn ESE370 Fall2012 -- DeHon
Channel Voltage
• Voltage varies along channel
• Think of channel as resistor
22
Penn ESE370 Fall2012 -- DeHon
Preclass 2
• What is voltage in the middle of a
resistive medium?
– (halfway between terminals)
23
Penn ESE370 Fall2012 -- DeHon
Voltage in Channel
• Think of channel as resistive medium
– Length = L
– Area = Width * Depth(inversion)
• What is voltage in the middle of the
channel?
– L/2 from S and D ?
24
Penn ESE370 Fall2012 -- DeHon
Channel Voltage
• Voltage varies along channel
• If think of channel as resistor
– Serves as a voltage divider between VS
and VD
25
Penn ESE370 Fall2012 -- DeHon
Impact on Inversion
• What happens when
– Vgs=2Vth ?
– Vds=2Vth?
• What is Vmiddle-Vs?
26
Penn ESE370 Fall2012 -- DeHon
Channel Field
• When voltage gap VG-Vxdrops below VTH,
drops out of inversion
– Occurs when: VGS-VDS< VTH
– What does this mean about conduction?
27
Penn ESE370 Fall2012 -- DeHon
Preclass 3
• What is Vm?
28
Penn ESE370 Fall2012 -- DeHon
Channel Field
• When voltage gap VG-Vxdrops below VT,
drops out of inversion
– Occurs when: VGS-VDS< VT
– What is voltage at Vmiddle if conduction stops?
– What does that mean about conduction?
29
Penn ESE370 Fall2012 -- DeHon
Contradiction?
• Vg-Vx < Vt  cutoff (no current)
• No current  Vg-Vx=Vgs
• Vg-Vx=Vgs > Vt  current flows
30
Penn ESE370 Fall2012 -- DeHon
Way out?
• Vg-Vx < Vt  cutoff (no current)
• No current  Vg-Vx=Vgs
• Vg-Vx=Vgs > Vt  current flows
Act like
Vds at
Vgs-Vt
31
Penn ESE370 Fall2012 -- DeHon
Channel Field
• When voltage gap VG-Vxdrops below VT,
drops out of inversion
– Occurs when: VGS-VDS< VT
– Channel is “pinched off”
32
Penn ESE370 Fall2012 -- DeHon
Channel Field
• When voltage gap VG-Vxdrops below VT,
drops out of inversion
– Occurs when: VGS-VDS< VT
– Channel is “pinched off”
– Current will flow, but cannot increase any
further
33
Penn ESE370 Fall2012 -- DeHon
Pinch Off
• When voltage drops below VT, drops
out of inversion
– Occurs when: VGS-VDS< VT
• Conclusion:
– current cannot increase with VDS once
VDS> VGS-VT
34
Penn ESE370 Fall2012 -- DeHon

Saturation
• In saturation, VDS-effecitve=Vx= VGS-VT
IDS
2 
W 
VDS
 nCOX  VGS VT VDS 

 L 
2 
• Becomes:
IDS
2 

VGS  VT 
W 
2


 n COX  VGS  VT  
 L 
2



35
Penn ESE370 Fall2012 -- DeHon
Saturation
• VDS> VGS-VT
IDS
2 

VGS  VT 
W 
2


 n COX  VGS  VT  
 L 
2



IDS 

n COX W 
2
  VGS  VT 
 L 
2

36
Penn ESE370 Fall2012 -- DeHon
Saturation Region
Blue curve
marks transition
from Linear
to Saturation
37
Penn ESE370 Fall2012 -- DeHon
Preclass 3
• What is electrical field in channel?
– Leff=25nm, VDS=1V
– Field = VDS/L
• Velocity: v=F*μ
– Electron mobility: μn = 500 cm2/V
• What is electron velocity?
38
Penn ESE370 Fall2012 -- DeHon
Short Channel
S
• Model assumes carrier velocity
increases with field
– Increases with voltage
• There is a limit to how fast carriers can
move
– Limited by scattering to 105m/s
• How relate to preclass 3 velocity?
• Encounter when channel short
– Modern processes, L is short enough
39
Penn ESE370 Fall2012 -- DeHon
D
Velocity Saturation
• Once velocity saturates:
IDS

VDSAT 
  satCOX W VGS  VT 


2 

VDSAT 
L sat
n
40
Penn ESE370 Fall2012 -- DeHon
Velocity Saturation
41
Penn ESE370 Fall2012 -- DeHon
Below Threshold
• Transition from insulating to conducting
is non-linear, but not abrupt
• Current does flow
– But exponentially dependent on VGS
42
Penn ESE370 Fall2012 -- DeHon
Subthreshold
IDS
W 
 IS  e
 L 
 VGS 


nkT / q 
 VDS 

kT / q 
1  e  1 VDS 


43
Penn ESE370 Fall2012 -- DeHon
Subthreshold
S
• W/L dependence follow from resistor
behavior (parallel, series)
– Not shown explicitly in text
• λ is a channel width modulation effect
IDS
W 
 IS  e
 L 
 VGS 


nkT
/
q


 VDS 

kT / q 
1  e  1 VDS 


44
Penn ESE370 Fall2012 -- DeHon
D
Subthreshold Slope
• Exponent in VGS determines how steep
the turnoff is
kT 
– Every S Volts
S  n ln 10
– Divide IDS by 10
 q 
IDS
W 
 IS  e
 L 
 VGS 


nkT
/
q


 VDS 

kT / q 

1 V 
1

e

DS



45
Penn ESE370 Fall2012 -- DeHon
Subthreshold
Slope
• Exponent in VGS determines how steep the
turnoff is
– Every S Volts (S not related to source)
kT 
– Divide IDS by 10
S  n ln 10
 q 
• n – depends on electrostatics
– n=1  S=60mV at Room Temp. (ideal)
– n=1.5  S=90mV 
– Single gate structure showing S=90-110mV
46
Penn ESE370 Fall2012 -- DeHon
IDS vs. VGS
47
Penn ESE370 Fall2012 -- DeHon
Admin
• Text 3.3.2 – highly recommend read
– Second half on Friday
• HW3 due Thursday
• HW4 out
48
Penn ESE370 Fall2012 -- DeHon
Big Idea
• 3 Regions of
operation for
MOSFET
– Subthreshold
– Resistive
– Saturation
• Pinch Off
• Velocity Saturation
– Short channel
49
Penn ESE370 Fall2012 -- DeHon