Chemistry-Climate Interactions: user requirements

Download Report

Transcript Chemistry-Climate Interactions: user requirements

Climate-Chemistry Interactions User Requirements
Martin Dameris
DLR-Institut für Physik der Atmosphäre
Oberpfaffenhofen
Institut für
Physik der Atmosphäre
Modelling of climate-chemistry interactions - Why?




Climate change detected (e.g. IPCC, 2001).
Changes in atmospheric composition observed (e.g. WMO,
2003).
Coupling of chemical processes in climate models.
Climate-Chemistry Models (CCMs) have been employed to
examine the feedback between dynamical, physical and
chemical processes.
Institut für
Physik der Atmosphäre
Modelling of climate-chemistry interactions - Why?
The primary goals of CCMs are to





support analyses of (long-term) observations of trace gases
and aerosols,
evaluate emission control measures,
determine and quantify underlying dynamical, physical and
chemical processes, and their feedback,
explain recent changes (variability),
assess possible future trends.
Institut für
Physik der Atmosphäre
Modelling of climate-chemistry interactions scientific applications or problems




Tropospheric air quality (chemical weather).
The effect of surface pollution (including traffic), aviation and
natural factors on chemical, radiative and dynamical (e.g.
long-range transport) processes in the upper troposphere
and stratosphere.
How do climate change impact atmospheric chemistry
(composition) and vice versa?
A key science issue is to determine the timing of ozone
recovery and future ultraviolet radiation at the surface.
Institut für
Physik der Atmosphäre
Development of CCMs - general progress in recent years
about 15 years ago
• first coupling of climate models
(GCMs) to simplified chemistry
(e.g. Cariolle et al., 1990).
about 7 years ago
• off-line climate-chemistry models (CCMs) with
complex chemistry (e.g. Steil et al., 1998);
• first results regarding ozone recovery (e.g.
Dameris et al.,1998; Shindell et al., 1998).
today
• interactively coupled CCMs available (e.g. Hein
et al., 2001);
• investigations of feedback between dynamical,
physical, and chemical processes (e.g. Schnadt
et al., 2002; Austin et al., 2003).
Institut für
Physik der Atmosphäre
The CCM E39/C - Description of model system
NOx Emissions [Tg N/a]
Surface, aircraft, lightning
Photolysis
Dynamics (ECHAM)
T30, 39 layers, top layer centred at 10 hPa
Chemistry (CHEM)
Prognostic variables
(vorticity, divergence, temperature, specific
humidity, log-surface pressure, cloud water),
hydrological cycle, diffusion,
gravity wave drag, transport of tracers,
soil model, boundary layer;
sea surface temperatures.
Institut für
Physik der Atmosphäre
Methane oxidation
Heterogeneous Cl reactions
PSC I, II, aerosols
Dry/wet deposition
Radiation
Chemical Boundary Conditions
Long-wave
Short-wave
Atmosphere: CFCs, at 10 hPa: ClX, NOy,
Surface: CH4, CO
Hein et al., 2001
Application of CCMs for process studies
Investigation of
 chemical composition and climate variability (change),
 tropospheric and stratospheric coupling,
especially in order to determine and quantify feedback processes.
Institut für
Physik der Atmosphäre
Comparison - E39/C vs. MSU:
temperature anomalies (1979-1990), 13-21 km, global mean
Institut für
Physik der Atmosphäre
Comparison - E39/C vs. NCEP analysis:
zonal mean temperature (80°N, 30 hPa)
NCEP
E39/C
Type I PSC
Type II PSC
E19/C
Type I PSC
Hein et al., 2001
Institut für
Physik der Atmosphäre
Comparison - E39/C vs. NCEP analysis:
zonal mean wind (60°N, 30 hPa)
E39/C
NCEP
E19/C
Institut für
Physik der Atmosphäre
Hein et al., 2001
Comparison - E39/C vs. GOME:
ozone columns [in DU]
Institut für
Physik der Atmosphäre
Gome data provided by DLR-DFD, Dr. M. Bittner
Comparison - E39/C vs. ground based and TOMS-data:
climatological mean values of total ozone and “trends”
1990
1990 - 1980
Latitude
-4
-26
-6
-24
McPeters et al., 1996
Institut für
Physik der Atmosphäre
Hein et al., 2001; Schnadt et al., 2002
Comparison - E39/C vs. GOME:
NO2 tropospheric columns (July)
E39/C (1990)
GOME (1996 - 2000)
Lauer et al., 2001;
Institut für
Physik der Atmosphäre
GOME-data provided by IUP, A. Richter and J. Burrows
Comparison - E39/C vs. GOME: NO2 tropospheric columns,
annual cycle over Africa
ECHAM4/CHEM
ECHAM4/CBM (G.-J. Roelofs, Utrecht)
GOME
Institut für
Physik der Atmosphäre
Lauer et al., 2001;
Matthes, 2003
Comparison - E39/C vs. GOME: NO2 tropospheric columns,
annual cycle over Africa and Europe
ECHAM4/CHEM
ECHAM4/CBM (G.-J. Roelofs, Utrecht)
GOME
Institut für
Physik der Atmosphäre
Lauer et al., 2001;
Matthes, 2003
Application of CCMs for sensitivity studies
E.g., assessments of future
 chemical composition,
 climate change,
 feedback processes
in the lower stratosphere, in particular with respect to ozone.
Institut für
Physik der Atmosphäre
E39/C - predictions
Southern / Northern Hemisphere spring time
1990
2015
Institut für
Physik der Atmosphäre
adapted from Schnadt et al., 2002
E39/C and others - predictions
SH: ozone recovery expected
to begin within the range
2001 to 2008
NH: ozone recovery expected
to begin within the range
2004 to 2019
TOMS
E39/C
Institut für
Physik der Atmosphäre
Austin, Schnadt, Dameris, et al., 2003
Evaluation of CCMs - user requirements
Satellite data products are required for validation of CCMs!
 Global coverage (hor. resolution: 50*50 km2).
 Long-term observation of spatial-temporal variability (interannual, seasonal, diurnal) of dynamical, physical and chemical
parameters, in particular temperature, wind, cloud cover, H2O,
CH4, O3, CO, OH, NOx, HNO3,N2O, aerosol microphysics.
 Profiles (vert. resolution: 1 km; troposphere: at least 2-3
independent pieces of height resolved information, with one
point in the boundary layer).
 Temporally high-resolution sampling (troposphere: 60 min.;
stratosphere: 3 hours).
Institut für
Physik der Atmosphäre
Evaluation of CCMs - user requirements
Geostationary platforms are required!
(3-5 missions necessary to get global coverage)
Institut für
Physik der Atmosphäre
The End.
Thank you!
Institut für
Physik der Atmosphäre