Transcript ppt

ESE370:
Circuit-Level
Modeling, Design, and Optimization
for Digital Systems
Day 16: October 7, 2013
Inverter Performance
1
Penn ESE370 Fall2013 -- DeHon
Previously
• Delay as RC-charging
• Transistor
– Capacitance
– Drive Current
– As a function of geometry (W/L)
2
Penn ESE370 Fall2013 -- DeHon
Today
 t-model
• Sizing
• Large Fanout
• Capacitance Revisited
– Miller Effect
– Parallel Gate Capacitance
3
Penn ESE370 Fall2013 -- DeHon
Transistor Sizing
• What happens to Ids as a function of W?

VDSAT 
IDS   satCOX W VGS  VT 


2 
• What happens to Cg as a function of W?

CG  CoxWL
• Conclude: faster transistors present
more load on their inputs
Penn ESE370 Fall2013 -- DeHon
4
First Order Delay
• R0 = Resistance of minimum size
NMOS device
• C0 = gate capacitance of minimum size
NMOS device
• Rdrive = R0/W
• Cg = WC0
5
Penn ESE370 Fall2013 -- DeHon
First Order Delay (alt view)
• I0 = Ids of minimum size NMOS device
• C0 = gate capacitance of minimum size
NMOS device
• Idrive = WI0
• Cg = WC0
IDS

VDSAT 
  satCOX W VGS  VT 


2 
6
Penn ESE370 Fall2013 -- DeHon
t model
• All delays are RC delays (CV/I delays)
• Always have an R0C0 term (C/I term)
 t= R0C0 (equivalently C0/I0)
• Express all delays in t units
• Like l units for measurement
– Separate delay into
• Technology dependent term t= R0C0
• Technology independent term
7
Penn ESE370 Fall2013 -- DeHon
Inverter Sizing
• What is the impact of the delay on the
middle inverter if double size of all the
transistors?
8
Penn ESE370 Fall2013 -- DeHon
How Size
• How size to equalize Rise and Fall?
 mn=500cm2/Vs, mp=200cm2/Vs
– When velocity saturated
– Rdrive=R0/2 (Idrive=2I0)
IDS

VDSAT 
  satCOX W VGS  VT 


2 
9
Penn ESE370 Fall2013 -- DeHon
SPICE Simulation
10
Penn ESE370 Fall2013 -- DeHon
SPICE Simulation 22nm
11
Penn ESE370 Fall2013 -- DeHon
Worst Case Delay
• Largest R
• Rdrive = max(Rpullup,Rpulldown)
• If equalize Rpullup and Rpulldown
– Rdrive = Rpullup=Rpulldown
12
Penn ESE370 Fall2013 -- DeHon
Equalizing Delay
• For simplicity, for today
– Assume Wp=Wn equalizes Ids
13
Penn ESE370 Fall2013 -- DeHon
Large Fanout
• What is delay if must
drive fanout=100?
14
Penn ESE370 Fall2013 -- DeHon
What Delay?
• What is delay here?
15
Penn ESE370 Fall2013 -- DeHon
How Size
• How size transistors to
minimize delay?
16
Penn ESE370 Fall2013 -- DeHon
Optimizing
•
•
•
•
•
Delay = 2Wmid/1 + 200/Wmid
How minimize?
D(Delay)/D(Wmid) = 0
2 – 200/(Wmid)2=0
Wmid=sqrt(100) = 10
17
Penn ESE370 Fall2013 -- DeHon
Delay?
• Delay at optimal Wmid?
18
Penn ESE370 Fall2013 -- DeHon
Try again
• What is the delay here?
19
Penn ESE370 Fall2013 -- DeHon
…and Again
• Delay here?
20
Penn ESE370 Fall2013 -- DeHon
Lesson
•
•
•
•
Don’t drive large fanout with a single stage
Must scale up over a number of stages
…but not too many
Exact number will be technology dependent
21
Penn ESE370 Fall2013 -- DeHon
Charge on Capacitors
22
Penn ESE370 Fall2013 -- DeHon
Questions
• What is DQ when switched?
• Equivalent Capacitance?
• Contribution from each transistor?
23
Penn ESE370 Fall2013 -- DeHon
Gate-Drain Capacitance
• What is the voltage
across Vin—V2
– When Vin=Vdd
– When Vin=Gnd
• What is DV across
Vin—V2 when Vin
switches from Vdd to
Gnd?
24
Penn ESE370 Fall2013 -- DeHon
Miller Effect
• For an inverting gate
• Capacitance between
input and output must
swing 2 Vhigh
• Or…acts as doublesized capacitor
25
Penn ESE370 Fall2013 -- DeHon
If Time Permits
(back to scaling)
26
Penn ESE370 Fall2013 -- DeHon
Improving Gate Delay
 tgd=Q/I=(CV)/I
 V S×V
How might we
accelerate?
 Id=(mCOX/2)(W/L)(Vgs-VTH)2
 Id  S×Id
 C  S×C
 tgd  S×tgd
Penn ESE370 Fall2013 -- DeHon
Lower C.
Don’t scale V.
Don’t scale V:
VV
II/S
tgd  S2×tgd
27
…But
Power Dissipation (Dynamic)
• Capacitive
(Dis)charging
 P=(1/2)CV2f
 V V
 C  S×C
• Increase
Frequency?
 f  f/S2 ?
 P  P/S
If not scale V, power dissipation not scale down.
28
Penn ESE370 Fall2013 -- DeHon
…And Power Density
• P P/S (increase frequency)
• But… A S2×A
• What happens to power density?
• P/A  (1/S3)P
• Power Density Increases
…this is where some companies have gotten into trouble…
29
Penn ESE370 Fall2013 -- DeHon
Historical Voltage Scaling
http://software.intel.com/en-us/articles/gigascale-integration-challenges-and-opportunities/
• Frequency impact?
• Power Density impact?
Penn ESE370 Fall2013 -- DeHon
30
Scale V separately from S
 tgd=Q/I=(CV)/I
V
 Id=(mCOX/2)(W/L)(Vgs-VTH)2
 Id  V2/S×Id
 C  S×C
 tgd  (SV/(V2/S))×tgd
 tgd  (S2/V)×tgd
Penn ESE370 Fall2013 -- DeHon
Ideal scale:
S=1/100
V=1/100
t=1/100
Fideal=100
Cheating:
S=1/100
V=1/10
t=1/1000
Fcheat=1000
fcheat/fideal=10
31
Power Density Impact
• P=1/2CV2 f
• P~= S V2 (V/S2) = V3/S
• P/A = (V3/S) / S2 = V3/S3
• V=1/10 S=1/100
• P/A  1000 (P/A)
32
Penn ESE370 Fall2013 -- DeHon
uProc Clock Frequency
MHz
The Future of Computing Performance: Game Over or Next Level?
National Academy Press, 2011
33
Penn ESE370 Fall2013 -- DeHon
http://www.nap.edu/catalog.php?record_id=12980
uP Power Density
Watts
The Future of Computing Performance: Game Over or Next Level?
National Academy Press, 2011
34
Penn ESE370 Fall2013 -- DeHon
http://www.nap.edu/catalog.php?record_id=12980
Ideas
• First order delay reason in t=R0C0 units
– Equivalently (C0/I0) units
• Scaling everything up doesn’t help
• Drive large capacitive loads in stages
35
Penn ESE370 Fall2013 -- DeHon
Admin
• HW5 due Tuesday
• Midterm solutions posted
36
Penn ESE370 Fall2013 -- DeHon