Transcript imecas
Comparison Study of Bulk and SOI
CMOS Technologies based Rad-hard
ADCs in Space
Feitao Qi , Tao Liu , Hainan Liu , Chuanbin Zeng , Bo Li , Fazhan Zhao , Jiantou Gao , Gang Zhang , Jiajun
Luo , Zhengsheng Han , and Zhongli Liu
Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, CHINA
Key Laboratory of Silicon Device Technology, Chinese Academy of Sciences, Beijing 100029, CHINA
AMICSA 2016-6-14
1
Overview
IMECAS
• INTRODUCTION
• SYSTEM ARCHITECTURE
• CIRCUITS DESIGN
• HARDENED APPROACHES
• EXPERIMENTAL RESULTS
• CONCLUSION
AMICSA 2016-6-14
2
INTRODUCTION
IMECAS
Harsh Space Environment:
Earth's radiation belts
Reliability
of ADC
Cosmic rays
Solar proton events
AMICSA 2016-6-14
3
INTRODUCTION
N+
P-
P+
N+
N-
IMECAS
P+
N+
P+
P+
N+
SiO2
NP-
Si
Si
(a)SOI CMOS
(b) Bulk CMOS
Rad-hard SOI CMOS V.S. Bulk CMOS :
higher speed
lower parasitic capacitance
smaller short channel effects
Rad-hard SOI
CMOS technology
is more suitable
for space
applications
excellent capability of radiation hardness
AMICSA 2016-6-14
4
INTRODUCTION
IMECAS
RHBD & RHBP
Radiation Hardened by Design and Radiation Hardened by Process
A 10bits 25Msps high reliability pipelined ADC as a prototype
ADC
1992
Integrating analog to digital converter radiation hardness
test technique and results
2006
Single-Event Sensitivity and Hardening of a Pipelined Analog-to-Digital
Converter
2013
Radiation-Tolerant Code-Density Calibration of Nyquist-Rate Analog-to-Digital
Converters
2002
Comparison of the sensitivity to heavy ions of 0.25-μm
bulk and SOI technologies
transistor
level
2013 Performance Comparison Between Bulk and SOI Junctionless Transistors
comparison
2014 Comparison of analog performance between SOI and Bulk pFinFET
circuit level This Comparison Study of Bulk and SOI CMOS Technologies based Rad-hard ADCs
comparison work
in Space
AMICSA 2016-6-14
5
INTRODUCTION
IMECAS
• The bulk and SOI based CMOS ADC have identical schematic design and
layout floor plan
•The bulk CMOS technology and radiation hardened SOI CMOS technology
have identical technology node
AMICSA 2016-6-14
6
SYSTEM ARCHITECTURE
IMECAS
Sample and Hold Front-end
Extend the input bandwidth
3+3+3+4 structure
2.5bits/stage for first three stages
4bits/stage for last stage
Digital Correction Logic
Correct the error from comparators within the system redundancy
VINP
SHA
VINN
MDAC1
GAIN=4
3
A/D
3
MDAC2
GAIN=4
3
A/D
3
MDAC3
GAIN=4
3
A/D
3
A/D
4
DIGITAL CORRECTION LOGIC
OUTPUT BUFFERS
10 BITS
AMICSA 2016-6-14
7
CIRCUITS DESIGN
IMECAS
Sample and Hold Circuit
Φ2
+
OPAMP
SW1
better radiation hardness capability
• Larger feedback factor
CS
Φ1P
VINP
VINN
SW2
Φ1
SW4
VCM
Φ1P
lower power consumption
Φ1
SW3
capacitor flip-around architecture
CS
+
VOP
VON
-
• lower load capacitor
Φ2
bottom plate sampling and
bootstrapped switch
reduce the nonlinear effects of the
switch
• charge injection
• clock feed through
improve the input bandwidth
AMICSA 2016-6-14
8
CIRCUITS DESIGN
IMECAS
Sample and Hold Circuit
+
-
VO
VIN
-
-
+
• DC offset increasing
+
• gain and bandwidth reduction
-
Effects of opamp caused by TID
+
-
amplifier
+
+
-
gain-boosted folded cascade
efficiently improve the gain without
reducing the bandwidth
Switched Capacitor Comparator with
Φ2
Φ2P
Φ1
+
VREFP
VINP
a preamplifier
VINN
Low DC offset
wide input common mode range
Φ1
-
Φ2
Φ2P
VREFN
AMICSA 2016-6-14
PREAMP
Switched Capacitor Comparator
Φ1PN
+
+
+
-
VOP
VON
-
9
RADIATION HARDENED APPROACHES
IMECAS
Hardened System and Circuits for ADC prototype
Properly determine and design system
structure and circuits
the 2.5bits/stage system structure
the capacitor flip-around S/H
the gain-boosted folded cascade amplifier
the switched capacitor comparator with a
preamplifier
Properly increase the current and capacitor
value in sensitive parts
generates much smaller deviations when radiated
deviations from comparators will be corrected by
the digital error correction logic
Hardened Layout for Bulk ADC
Mitigate the sensitivity of Single event
Latch-up
Enough substrate contact around the transistor
AMICSA 2016-6-14
10
RADIATION HARDENED APPROACHES
IMECAS
Radiation Hardened SOI CMOS Technology
Single event Latch-up Immunity
N+
P-
N+
P+
Join silicon dioxide on silicon
SiO2
substrate
Si
N-
P+
SEU and SEFI sensitivity mitigation
Smaller charge collection volume
Other Radiation Hardened Measures
High level total ionizing dose radiation
hardened
AMICSA 2016-6-14
11
EXPERIMENTAL RESULTS
IMECAS
Electrical Experiment
Table 1 Electrical Characteristics Comparison
of SOI-based ADC and bulk CMOS ADC
SOI ADC
(a)SOI CMOS ADC
(b)Bulk CMOS ADC
Bulk ADC
FS(Hz)
25M
Freq_vin(Hz)
2M
5
Supply(V)
240
Consumption(mw)
DNL(LSB)
±0.4
±0.4
INL(LSB)
±0.5
±0.5
SNR(dB)
60.5
59.6
SFDR(dB)
72.3
74.4
SINAD(dB)
60.2
59.2
ENOB(bits)
9.7
9.5
AMICSA 2016-6-14
12
EXPERIMENTAL RESULTS
IMECAS
FFT PLOT
0
Electrical Experiment
characteristic
smaller parasitic capacitance
better I-V characteristic
-40
AMPLITUDE (dB)
SOI ADC exhibits better frequency
1st
2nd
3rd
4th
5th
6th
7th
8th
9th
-20
-60
-80
-100
-120
-140
-160
0
ENOB vs SAMPLE RATE
4
6
8
10
ANALOG INPUT FREQUENCY (Hz)
12
BULK ADC
SOI ADC
6
FFT PLOT
0
1st
2nd
3rd
4th
5th
6th
7th
8th
9th
-20
8
-40
AMPLITUDE (dB)
7
ENOB(bits)
14
x 10
(a) SOI CMOS ADC
10
9
2
6
5
-60
-80
-100
-120
4
-140
3
-160
2
20
22
24
26
28
30
32
SAMPLE RATE(Msps)
34
36
38
40
-180
0
2
4
6
8
10
ANALOG INPUT FREQUENCY (Hz)
(b) Bulk CMOS ADC
AMICSA 2016-6-14
12
14
6
x 10
13
EXPERIMENTAL RESULTS
IMECAS
TID Experiment
Experiment conditions
Radiation
•
•
•
•
•
Cobalt-60 gamma radiation source
at the room temperature
static bias state
dose rate of 50rad(Si)/s
irradiated to 500krad(Si)
Anneal
• static bias state
• 168 hours
• at 100℃
Measure point
pre-radiation, 50k, 100k, 150k, 300k, 500krad(Si) and
after anneal
AMICSA 2016-6-14
14
EXPERIMENTAL RESULTS
IMECAS
SFDR vs TID
75
TID Experiment
70
65
SFDR(dB)
SOI ADC
TID tolerance > 300krad(Si)
Bulk ADC
TID tolerance <50krad(Si)
60
55
50
45
BULK ADC
SOI ADC
CONSUMPTION vs TID
40
360
0
50
100
150
BULK ADC
SOI ADC
350
200
250
300
TID(krad(Si))
350
400
450
500
ENOB vs TID
10
330
9
320
8
310
ENOB(bits)
CONSUMPTION(mw)
340
300
290
7
6
280
5
270
260
BULK ADC
SOI ADC
0
50
100
150
200
250 300
TID(krad(Si))
350
400
450
500
4
0
AMICSA 2016-6-14
50
100
150
200
250
300
TID(krad(Si))
350
400
450
500
15
EXPERIMENTAL RESULTS
IMECAS
SEE Experiment
DC analog input signals
-0.8V, 0V and 0.8V
At room temperature
LET_Cl
17MeV•cm2/mg
flux
104/cm2•s
fluence
107/cm2
Noise window
±4LSB
Expected
Digital Output
96-103,504511,920-927
AMICSA 2016-6-14
16
EXPERIMENTAL RESULTS
IMECAS
SEE Experiment
SOI ADC
SEL and SEFI
immunity
@LET = 63MeV·cm2/mg
SEU cross-section
•
3.1X10-6cm2/device @LET =
17MeV·cm2/mg
9.6X10-6cm2/device @LET =
63MeV·cm2/mg
•
Bulk ADC
SEL and SEFI
•
-3
10
CROSS SECTION(cm2/device)
•
CROSS SECTION vs LET
-2
10
-4
10
-5
10
-6
10
BULK ADC
SOI ADC
-7
10
0
10
20
30
40
LET(MeV*cm2/mg)
50
60
70
immunity @LET = 63MeV·cm2/mg
single event upset (SEU) cross-section
•
two order of magnitude higher than SOI ADC
AMICSA 2016-6-14
17
CONCLUSION
IMECAS
In conclusion, by implementing simple RHBD approaches
and taking the inherent advantage of the rad-hard SOI
technology, the SOI-based ADC achieves the TID tolerance of
300krad(Si) at least, nearly one order of magnitude higher
than bulk ADC, and the SEU cross-section of
6cm2/device
9.6X10-
at 63MeV·cm2/mg LET, lower than bulk ADC by
two orders of magnitude, more suitable for harsh radiation
environment applications.
AMICSA 2016-6-14
18