C. Hutchens Chap 5 ECEN 3313 Handouts 1 Chapter 5

Download Report

Transcript C. Hutchens Chap 5 ECEN 3313 Handouts 1 Chapter 5

Chapter 5
•
•
•
•
•
•
•
•
Structure and Physical Operation
I -V characteristics
MOSFET DC circuits
MOSFET amplifiers
Biasing MOSFETS
CMOS Inverter
High Frequency MOS model
SPICE MOSFET model parameters
C. Hutchens Chap 5 ECEN 3313 Handouts
1
MOS Structure
Drain and Source are defined by the voltage polarity, NMOS D to S (+ to -)
PMOS D to S (- to +).
Drain, Source, Body (Well ) regions are defined by masking and Doping (NA
p type or ND - n type).
Gate is formed by the growing of SiO2 over a silicon region and depositing
polysilicon over the gate oxide. Gate oxides are 30 to 500Ao thick.
Contact to the B, G, D and S regions is made by Al and most reciently Cu.
“FET Transistor action” takes place under the gate or channel oxide.
C. Hutchens Chap 5 ECEN 3313 Handouts
2
MOS Transistor Operation-OFF
Off or non-conduction - Accumulation
Note depletion region.
Qp = Cox VGS where both body and
source are tied together and to gnd.
where Cox = ox 0 /tox and Cgs = W
L Cox
Now the drain to source circuit is two
back to back diodes and on the order
of 1012 + ohms.
Circuit model: ----o  o----- VGS < VTN
C. Hutchens Chap 5 ECEN 3313 Handouts
Veff = VGS - VTN = V “effective gate
voltage”
where VTN is the start of
channel formation.
Qn  Cox V is the charge in the
channel and on the gate and
where Cox = ox 0 /tox and Cgs =
W L Cox.
Now at low VDS I. e. < 50mV
ID = n Qn W/L VDS = n Cox W/L V
VDS
n = 0.06m2/V-S
3
Triode or Linear Region
Qr viewed as a resistor----------VDS/ID = RCH =L/( W n Cox V) = (L /W) Rsheet
For small VDS linear voltage controlled resistor.
Resistance controlled by L/W ratio. Circuit designer can control L/W
and  Veff.
An Inc. in  Veff increases the channel thickness or dec. resistance
which allows more current to flow for a fixed VDS.
Alternatively ID can be set by L/W and  V.
C. Hutchens Chap 5 ECEN 3313 Handouts
4
Increasing VDS
VDS effects on the channel - Note Veff = VGS - VTN is constant
 Inc VDS reduces the channel thickness
which in turn limits the current.
 This is refered to as saturation
 For every value of VGS > VTN there is a cooresponding value
of

VDSsat = VGS - VTN and an IDsat . Where
IDsat = n Cox W/L (VGS - VTN)2/2
C. Hutchens Chap 5 ECEN 3313 Handouts
5
Derivation of iD vs vDS
 dq(x) = - Cox W dx[vGS - v(x) -VT] where Cox = ox/tox
(SPICE TOX)
 Note: VG is constant everywhere due to
poly conductance
 Rearranging and integrating x= 0 to x=L and
v(0) = 0 to v(L) - vDS
L
i
D
0
 vDS produces an E-field E(x) = -dv(x)/dx
 neg. electrons drift dx/dt = n dv(x)/dx
dx 
vDS
  C W  v
n
ox
GS

 VT  v x  dv( x )
0
1
W 
2
iD   n Cox    vGS  VT v DS  v DS 
 L 
2

 i = (dq) (driftvel) = {- Cox W dx[vGS - v(x) -VT]} n dv(x)/dx
(The negative of the source current.)
 iD = Cox W dx[vGS - v(x) -VT]} n dv(x)/dx
C. Hutchens Chap 5 ECEN 3313 Handouts
6
Transition of iD vs vDS Triode to Sat.
Region 1- Linear Depence
on VDS.
Region 2 from 1 to 3a
Quadratic depencence on
VDS
1
W 
2
iD   n Cox    vGS  VT v DS  v DS 
 L 
2

At vDSsat iDsat is reached
and can be found by
substituiting vDS = vGS-VT.

1 W 
2
iD   n Cox    vGS  VT 
2 L
C. Hutchens Chap 5 ECEN 3313 Handouts

7
Process Parameter Constants
 Electron mobility UO
n = 580cm2/Vs
 gate oxide thickness TOX
tox = 0.04m to 0.004m L=2m and 0.1m
 permittivity
ox = 3.907o = 3.5x10-13 F/cm = 3.5x10-17 F/m
 Sheet Cap
Cox = ox/tox = 0.875fFd/m2, 8.75fFd/m2 tox =
0.04m and 0.004m
 Capacitance per unit W
 Process Transconductance
KP
C. Hutchens Chap 5 ECEN 3313 Handouts
Cox L = 1.65fd/m or 0.875fFd/m
Often for purposes of estimation we can use
1fFd/m
kn’ = n Cox = 50A/V2 for NMOS and 18A/V2 for
PMOS
8
SPICE MODEL parameters
*N38L
SPICE LEVEL 2 PARAMETERS (2 micron orbit n-well)
.MODEL nfet NMOS LEVEL=2 PHI=0.600000 TOX=4.1900E-08
XJ=0.200000U TPG=1
+ VTO=0.8123 DELTA=5.5710E+00 LD=3.0410E-07 KP=4.6869E-05
+ UO=568.7 UEXP=1.4610E-01 UCRIT=8.6360E+04 RSH=2.1170E+01
+ GAMMA=0.4675 NSUB=4.4720E+15 NFS=1.9800E+11 VMAX=5.9890E+04
+ LAMBDA=3.3370E-02 CGDO=3.7593E-10 CGSO=3.7593E-10
+ CGBO=3.9487E-10 CJ=9.2516E-05 MJ=0.7551 CJSW=4.8928E-10
+ MJSW=0.336658 PB=0.800000
* Weff = Wdrawn - Delta_W
* The suggested Delta_W is -3.0840E-07
.MODEL pfet PMOS LEVEL=2 PHI=0.600000 TOX=4.1900E-08
XJ=0.200000U TPG=-1
+ VTO=-0.9901 DELTA=5.2390E+00 LD=3.8900E-07 KP=1.6549E-05
+ UO=200.8 UEXP=2.9100E-01 UCRIT=8.4920E+04 RSH=4.8190E+01
+ GAMMA=0.6810 NSUB=9.4900E+15 NFS=3.270E+11 VMAX=9.9990E+05
+ LAMBDA=4.5130E-02 CGDO=4.8089E-10 CGSO=4.8089E-10
+ CGBO=3.7299E-10 CJ=3.2306E-04 MJ=0.5717 CJSW=3.0368E-10
+ MJSW=0.259043 PB=0.800000
* Weff = Wdrawn - Delta_W
* The suggested Delta_W is -1.7220E-07
C. Hutchens Chap 5 ECEN 3313 Handouts
9
MOSFET SPICE parameters
**********
.MODEL NMOS1_2 NMOS LEVEL=2 LD=0.181362U TOX=402.000000E-10
+ NSUB=6.567000E+15 VTO=0.805287 KP=4.757000E-05 GAMMA=0.5435
+ PHI=0.6 UO=553.83 UEXP=0.151038 UCRIT=48309.6
+ DELTA=0.823727 VMAX=50459.8 XJ=0.250000U LAMBDA=3.437039E-02
+ NFS=4.094390E+12 NEFF=1 NSS=1.000000E+12 TPG=1.000000
+ RSH=19.340000 CGDO=2.336825E-10 CGSO=2.336825E-10 CGBO=7.582249E-10
+ CJ=1.011600E-04 MJ=0.633000 CJSW=5.320000E-10 MJSW=0.266000 PB=0.800000
* Weff = Wdrawn - Delta_W
* The suggested Delta_W is 0.40 um
***********
.MODEL PMOS1_2 PMOS LEVEL=2 LD=0.250000U TOX=402.000000E-10
+ NSUB=6.786000E+15 VTO=-0.758994 KP=1.843000E-05 GAMMA=0.5525
+ PHI=0.6 UO=214.5 UEXP=0.253978 UCRIT=40136.1
+ DELTA=0.135535 VMAX=78961.6 XJ=0.050000U LAMBDA=4.876526E-02
+ NFS=4.352678E+11 NEFF=1.001 NSS=1.000000E+12 TPG=-1.000000
+ RSH=107.700000 CGDO=3.221216E-10 CGSO=3.221216E-10 CGBO=6.309201E-10
+ CJ=2.474000E-04 MJ=0.548900 CJSW=3.155000E-10 MJSW=0.327000 PB=0.800000
* Weff = Wdrawn - Delta_W
* The suggested Delta_W is -0.12 um
C. Hutchens Chap 5 ECEN 3313 Handouts
10
MOSFET parameters Ex -graphical
Use the Large signal model equations to find a) the value of rDS for small
values of vDS if vGS = 5V, VTO = 1V and b) the value of ID if vDS = 5V and vGS
= 3V. Assume that kn’ = n Cox = 50A/V2 and W/L = 100m/10m.
C. Hutchens Chap 5 ECEN 3313 Handouts
11
PMOS Enhancement
C. Hutchens Chap 5 ECEN 3313 Handouts
12
SPICE MOSFET parameters
VT0
U0
TOX
LD
GAMMA
NSUB
PHI
PB
CJ
CJSW
LAMBDA
RX
MJ
MJSW
CGD0
VTX
X
tox
LD

NX
|2F|
0
Cj0
Cj-sw0
1/
RE
mj
mj-sw
sidewall
Cgd/W
C. Hutchens Chap 5 ECEN 3313 Handouts
threshold where X = N or P
mobility where X = n or p
gate oxide thickness
gate drain (source) overlap
body threshold modulation paramater
substate doping X = A or D for N or P MOS
surface strong inversion potential
built in contact potential junction to bulk
zero bias bottom cap. for D-Bdy and S- Bdy
zero bias side wall cap. for D-Bdy and S- Bdy
recipocal forward early voltage 1/= VA
Series S and D contact resistance X = S o D
Grading coiefficent exponent junction bot.
Grading coiefficent exponent junction
per unit width G-D and G-S overlap cap.
13
Complimentry CMOS & Symbols
1 W 
2
iDn  kn    vGS  VT  1   N v DS 
2 L
1 W 
2
iDp  k p    vGS  VT  1   P v DS 
2 L
C. Hutchens Chap 5 ECEN 3313 Handouts
14
Large Signal Equivalent Ckt
Regions of Operation
 Triode or Linear or ohmic - vDS < vGS - VT = V
iD   n Cox
1 W 
   vGS  VT  v DS 
2 L
 Saturation vDS > vGS - VT = V
1 W 
2
iD   n Cox    vGS  VT  1  v DS 
 
2 L
 Off vGS < VTN
 Note change of > sign for PMOS
i.e. Off vGS > VTP
C. Hutchens Chap 5 ECEN 3313 Handouts
15
Modeling rout
Effective Output Resistance
1/ = VA is refered to as the early voltage in
Bipolar ckts and “LAMBDA” the parameter that
accounts for the “tilt” of the output charcteristics.
VA  L  If is very very important when
attempting to match transistors that L be equal
for all transistors which are being matched.
1
1
 i 
W
1
V

ru   D 
  N kn'
 A
V 2  
2L
 N iD iD

 vGS  vGS  cons tan t 
C. Hutchens Chap 5 ECEN 3313 Handouts
16
vSB effect on VT
 VSB modulates (depletes) the body
increasing the required gate voltage to
develop a channel.

 Typically all or most transistors share the
same body.

 To avoid the possibility of forward biasing
one or more D/S to bdy diodes the body of
NMOS (PMOS) device are tied to VSS (VDD).
C. Hutchens Chap 5 ECEN 3313 Handouts
VT  VT 0  

2 f  vSB  2 f

where
 
2qN X  Si
Cox
and
VT 0  VT  v SB  0 X = A for
NMOS and D for PMOS
17
Misc. Effects
 Temperature
 VT decreases 2mV/Co rise
 k’ decreases faster with the result beening less
I and slower speed.
 Breakdown- (gate oxide and D-B diode
avalanching), punch through (Source-Drain
depletion).
Assume “LAMBDA” and ”GAMMA” effects can be ignored. Discuss the errors
associated with ignoring  and .
1 W 
2
iD   nCox    vGS  VT  1  vDS 
2 L
C. Hutchens Chap 5 ECEN 3313 Handouts
RS = (VS - VSS)/id RD = (VDD - VD)/id
18
Current Mirror EX
Given the following transistor data kn = 50uA/V2, kp = 20uA/V2 , VTN = 1V, VTP = 1V, N = 2P
= 0.02 V-1 and VDD and VSS are 5 and -5V respectively.
For circuit 1 if both transistors have a W/L of 10 and RD = 50K find the required RB to set
ID  250uA ignoring . What is the value of VDS? What is the effect of ignoring ?
For circuit 2 if V of the NMOS device (W/L = 100um/5um) is to be 1V (VGS = 1 + VT = 2V)
and the PMOS mirrors are to have an identical V of 1 V. a) Find the value of RB, b) the
geometries of the PMOS devices, and c) estimate the VDS of the NMOS transistor. How
many different PMOS mirror geometry arrangements will satisfy the circuit requirement?
C. Hutchens Chap 5 ECEN 3313 Handouts
19
MOSFET DC BIAS
Given the following
transistor data kn =
50uA/V2,, VTN = 1V, N =
0.01 V-1 and VDD and VSS
are 10 and 0 volts
respectively.
MOSFET BIAS
Gate Eq. VGG = VGS + ID RS
Drain Eq. VDD = IDRD + VDSQ + IDRS
QPT is VDSQ, ID “Designer selects the desired QPT”
Now selecting VDSQ = 4V, ID =1mA
VGG = VGS + ID RS = 3 V + 1mA 2K = 5V
RD = (VDD - VDSQ - IDRS )/ ID = (10V - 4V)/1mA - 2K = 4 K
C. Hutchens Chap 5 ECEN 3313 Handouts
20
Shifting the Qpt for Gain A
iDn  kn
1 W 
2
   vGS  VT  1  v DS 
2 L
go = gds = ID/vDS for constant vGS
C. Hutchens Chap 5 ECEN 3313 Handouts
21
Distorting the Signal
C. Hutchens Chap 5 ECEN 3313 Handouts
22
Shifting the Qpt con’t
iDn  kn
1 W 
2
   vGS  VT  1  v DS 
2 L
Forward transconductance
is a critical concept.
gm = ID/vGS for constant vDS
C. Hutchens Chap 5 ECEN 3313 Handouts
23
MOSFET DC BIAS
MOSFET BIAS (Con’t)
VGG = R1/(R1 + R2) and RG = rin = R1||R2 rin at the gate
For input signals/nodes rin should be >> Rgen
For output signals/nodes ro should be >> RLoad when
possible
EX
rin = R1||R2 >> Rgen i.e. 50 ohms
r0  RD >> RL 100K ohms
gate input
drain output
Note it can be shown that for max. Vpp swing at VDS
ID = VDD /(Rac + RDC) ; VDSQ = Rac IDQ
where Rac  RD||RL , RDC = RD + RS and for RL = 
ID = VDD /(2RD + RS) ; VDSQ = RD IDQ
C. Hutchens Chap 5 ECEN 3313 Handouts
24
MOSFET DC BIAS-CS,CD,CG
C. Hutchens Chap 5 ECEN 3313 Handouts
25
Bias Stabilization
C. Hutchens Chap 5 ECEN 3313 Handouts
26
MOSFET Small Signal Equivalent Ckt
C. Hutchens Chap 5 ECEN 3313 Handouts
27
CS small signal eqivalent Ckt
Given the following transistor data kn =
50uA/V2,, VTN = 1V, N = 0.01 V-1 and
VDD and VSS are 10 and 0 respectively.
Observations for CS for all Capacitors are Large or neglectable
 rin  R1||R2 = RG
 Cap CS
 ro of circuit - ac impedance at the drain (output for CS ) exclusive of RL
 remove RL apply an ac test current at vo with vin open ckt.
 vo (GD + gds) + gm vgs + iin = 0
 r0 = RD||rds  RD
 Av small signal voltage gain
 vo (GD + gds) + gm vgs = 0; vgs = vin
 Solving for vo/ vin = Av = -gm (RD||rds||RL)  -gmRD
C. Hutchens Chap 5 ECEN 3313 Handouts
28
CS small signal eqivalent Ckt
Given the following transistor data kn =
50uA/V2,, VTN = 1V, N = 0.01 V-1 and
VDD and VSS are 10 and 0 respectively.
W/L = 200um/5um
EX If the CS circuit above has an RD = 10K ohm, RS = 4K ohm, RL = 400k ohm,
and VGG = 2.5V determine AV.
 From VGG = VGS + ID RS = (2ID/)1/2 + VT + ID RS = 2.5V
 ID = 250uA
 From VDSQ = VDD - ID (RS + RD) = 10 - 14k 0.25mA = 6.5V
  Transistor is in the Sat region and will be amplifing.
 gm = (2ID )1/2 =(2( 0.25mA )(40) 50/V2)1/2 = 1mS
 gds = 1/ rds = ID = 0.01/V .25mA = 2.5uS or 400K
 AV = - gm (RD || RL ||rds)  -1mS 10K = -10.
What is the max input allowed before major distortion and what is V pp?
C. Hutchens Chap 5 ECEN 3313 Handouts
29
CS small signal eqivalent Ckt
Given the following transistor data kn =
50uA/V2,, VTN = 1V, N = 0.01 V-1 and
VDD and VSS are 10 and 0 respectively.
W/L = 200um/5um
EX If the CS circuit above has an RD = 10K ohm, RS = 4K ohm, RL = 400k ohm,
and VGG = 2.5V determine AV.
 From VGG = VGS + ID RS = (2ID/)1/2 + VT + ID RS = 2.5V
 ID = 250uA
 From VDSQ = VDD - ID (RS + RD) = 10 - 14k 0.25mA = 6.5V
  Transistor is in the Sat region and will be amplifing.
 gm = (2ID )1/2 =(2( 0.25mA )(40) 50/V2)1/2 = 1mS
 gds = 1/ rds = ID = 0.01/V .25mA = 2.5uS or 400K
 AV = - gm (RD || RL ||rds)  -1mS 10K = -10.
What is the max input allowed before major distortion and what is V pp?
C. Hutchens Chap 5 ECEN 3313 Handouts
30
Modeling the Body effect
Body Effect
VT  VT 0  

2 f  vSB  2 f

gm =  (VGS - VT)
Observations
 gm dec. with inc. VT
 VT inc. with inc vSB
EX For an NMOS transistor
with 2f 0.6 ,  = 0.5V1/2,
and VSB = 4 find .
Designs and analysis must consider this
as approiate.
 Digital Logic i.e. NOR gate
 Analog distortion gmbc = gm
gmb 

C. Hutchens Chap 5 ECEN 3313 Handouts
iD
vsb v
GS  v DS
VT


VSB 2 2 f  VSB
31
Biasing in Integrated MOS Amps
Basic Current mirroring/steering or routing
1 W 
2
iDp  k p    vGS  VT  1   N v DS 
2 L
1 W 
2
iDn  kn    vGS  VT  1   P v DS 
2 L
ID1 = IREF = (VDD- VGS)/R
1 W 
2
   v GS  VT  1  v DS  ;


2 L
1 W 
2
i2  k n    v GS  VT  1  v DS 
2 L
iD1  k n
iO
I REF
1 W 
2
W 
   v GS  VT  1  v DS 2   
 L  2 1  v DS 2  W2
2 L 2



1 W 
2
 W  1  v GS 1  W1
k n    v GS  VT  1  v GS 1   
 L 1
2  L 1
kn
Note in IC designs L1 = L2 “always”
C. Hutchens Chap 5 ECEN 3313 Handouts
32
Current Steering
I2 = I1 W 2/W 1 ;
I3 = I4 = I1 W 3/W 1;
I5 = I4 W 5/W 4;
I5 =I1 {W 3/W 1}{ W 5/W 4};
VGS4 = VGS5 = (2 ID/  ) - |VTP|
Note All VDS > VGS - |VT| = V
Error Sources - matching of geometry, voltages and Vts.
iO
I REF
W 
 
 L  2 1  v DS 2  W2
W


1  v DS 2 1  v GS 1   2   ( v DS 2  v GS 1 

W1
 W  1  v GS 1  W1
 
 L 1
C. Hutchens Chap 5 ECEN 3313 Handouts
33
IC Biasing of the Basic MOS amps
C. Hutchens Chap 5 ECEN 3313 Handouts
34
Common Source amp in ICs
To remain a “linear” amp stage M1 and M2 must
remain in stauration. Then
AVDC = gm2 /(gds1 + gds2) where
gds1 = P ID = ID/VAP;
gds2 = N ID = ID/VAN
gm = { 2kn’(W/L) ID} =  2 V
AVDC = ( 2 V)/( P ID+ N ID)
Noting that ID = ( 2 V) V/2
AVDC = 2/{ V( P + N)}
AV depends on  V, but ID on  V
Exercise: What is the effect of CL on AV?
C. Hutchens Chap 5 ECEN 3313 Handouts
35
Common Gate in ICs
A CMOS CG amp is fabed in
0.8um technology has W/L =
100um/1.6um geometries for all
transistors, kn’ = 90uA/V2, kp’ =
30uA/V2, ID = IREF = 100uA, VAN =
14, VAP = 20, and  = .15. Find
ro, rin, and Av.
C. Hutchens Chap 5 ECEN 3313 Handouts
36
Common Drain
in
ICs
Voltage Follower
vo = gm1 (rds1||rds2||1/gmbvs)vgs1 = gm1 RSvgs1
vin = vgs1 + vo = vgs1(1 + RS)
AV = gm1 RSvgs1/{ vgs1(1 + RS)}
AV  gm1/(gm1 + gmbs1) = 1/(1+)
To operate in the amplifier region- both transistors
saturated vo  vI > V2 and vI < VDD - VTN1.
EX if V2 =V1 = 250mV, W/L = 100um/1.6um
geometries for all transistors, kn’ = 90uA/V2, ID =
IREF = 100uA, VAN = 14, VAP = 20, and  = .15. Find
Vopp if VDD -VSS = 3.3V, AV, and go.
C. Hutchens Chap 5 ECEN 3313 Handouts
37
INVERTER
POWER
0 to 1 charge CL to VDD 1/2 CLVDD2 Stored
1 to 0 charge CL to discharged
Total energy dissapated per cycle - CLVDD2
Three sources of power dissapation
1. Offstate leakage currents(subthreshold )
2. Shunt currents (During transiotion both Device are on).
3. CLVDD2
CMOS Power Diss  Cleff VDD2
C. Hutchens Chap 5 ECEN 3313 Handouts
38
Inverter Q pts.
C. Hutchens Chap 5 ECEN 3313 Handouts
39
CMOS INVERTER
Reg
A
B
C*
D
E
VIN
<VTN
VIL
Vtrip
VIH
> VDD- VTP
VO
NMOS
PMOS
VOH
“ 1”
Vtrip
“ 0”
VOH
cutoff
Sat.
Sat.
lin.
lin.
lin.
lin.
Sat.
Sat.
cutoff
* Note at C, VIN = VO = Vtrip.
This will equal
(VDD- VSS )/2 if NMOS and PMOS are “Beta”
matched and VTN + VTP = 0. In addition NMH will
equal NML.
Solving for VIL in Region B
IDN (sat) = IDP (tri)
dVO/dVI = -1
Solving for Vtrip in Region C
IDN (sat) = IDP (sat)
VO= VI
Solving for VIH in Region D
IDN (tri) = IDP (sat)
dVO/dVI = -1
C. Hutchens Chap 5 ECEN 3313 Handouts
40
CMOS INVERTER
Solving for VIL in Region B - IDN (sat) = IDP (tri)
VIL = {2 V0 + VTP - VDD + kR VTN}/(1 + kR)
where kR = n (W/L)n /p (W/L)p
Note typically Ln = Lp = Lmin
then
kR = (n W n )/(p (W p)
Solving for VIH in Region D - IDN (tri) = IDP (sat)
VIH = { VDD + VTP +kR (2 V0 + VTN}/(1 + kR)
where kR = (n W n )/(p (W p)
Solving for Vth in Region C - IDN (sat) = IDP (sat)
Vth = VTN + 1/( kR){ VDD + VTP}/(1 +( 1/kR)
C. Hutchens Chap 5 ECEN 3313 Handouts
41
The Digital CMOS inverter
Roneff  (VDD-VSS)/{ID(VGS=VDD) - ID(VGS=VSS)} = VDD/ID
R oneff 
VDD
1
L 2


1 W 
1 W 
2
W k nVDD
k n    v DD  VT 
k n   VDD
2 L
2 L
R oneff 
L
Ronsheet
W
Note |VT| VDD/5
t fall = 2.2R oneff C
for a 10 to 90 per cent signal
(0.1 VDD to 0.9VDD)
t fall = 2.2R oneff C  2.2
L
4.4C
Ronsheet C 
W
(W / L )k nVDD
Note simplier than text but 2.5X larger time.
Therefore somewhat conservative.
C. Hutchens Chap 5 ECEN 3313 Handouts
EX If W/L = 1.6um/0.8um, kn = 100uA/V2
and VDD =VDD-VTN = 2.5V and C = 20fFd
find tfall = tHL for a CMOS inverter. If it is
clocked at 100MHz estimate the power
dissipation.
42
The Digital CMOS inverter
EX If W/L = 1.6um/0.8um, kn = 100uA/V2
and VDD =VDD-VTN = 2.5V and C = 20fFd
find tfall = tHL for a CMOS inverter. If it is
clocked at 100MHz estimate the power
dissipation.
C. Hutchens Chap 5 ECEN 3313 Handouts
43
The CMOS switch
VIN Positive
PMOS: V = VSS + VT, VDS
Sat to Triode “Just like
inverter rise”
NMOS: V = VDD - VT to 0,
VDS Sat, Source can not
rise above VTN
VIN Negative
NMOS: V = VDD - VT, VDS
Sat to Triode “Just like
inverter fall”
PMOS: V = VDD - VT to 0,
VDS Sat Source can not
drop below |VTP|
C. Hutchens Chap 5 ECEN 3313 Handouts
44
High Frequency MOSFET model
Sat Region “Most Analog amplifiers”
Cgd = W LD Cox = W CGDO << Cgs Cox = ox/TOX Assume =0 Yes 0!
Cgs = 2/3 W L Cox
Triode Region “Most Digital Logic and T-gate switches”
Cgs = Cgd = 1/2 W L Cox
Junction or Depletion Caps. “est.”
Cdb = Csb ={ Area Drain (Source)} CJ0/2 + {Perimeter Drain (Source) } CJSW
C. Hutchens Chap 5 ECEN 3313 Handouts
45
MOSFET fT
fT is defined as the unity current gain bandwidth.
Specifically the frequency at which the input current
magnitude is equal the output current bandwidth.
Find the unity bandwith for an NMOS transistor
biased under ideal conditions and it compare to its’
unity voltage gain bandwidth if it is loaded with an
identical NMOS transistor. Assume both are in
saturation. Finally find the fall time of an inverter
loaded by an identical inverter and compare the
results symbolically. How close are the results?
C. Hutchens Chap 5 ECEN 3313 Handouts
46
MOSFET fT
id = gm vgs + (0- vgs) sCgd
(1)
(vgs - vin )Rg + vgs (s Cgs + sCgd ) = 0
(2)
Or iin = vgs (sCgs +sCgd ) Note Rg has no effect.
(3)
Ai = Id/Ig = { gm vgs + (0- vgs) sCgd }/{ vgs (sCgs +sCgd )}
Ai = {gm – sCgd }/ { (sCgs +sCgd )}
Ai (s) = [gm]{1 – sCgd/ gm }/ { (sCgs +sCgd )}
THIS IS VERY IMPORTANT
the LINK BETWEEN
ANALYSIS- THE SIMULATOR
and OUR MODEL. SPICE
MODELS ARE 98% REALITY
AND TRANSFERABLE.
We now have a pole at the origin and a a zero
 Infinite current gain at “DC”
 zero @ gm/( Cgs +Cgd)
 In SPICE
 gm = KP (W/L)Veff , Cgs = 2/3WLCox , C =
WCgdo
C. Hutchens Chap 5 ECEN 3313 Handouts
47
Small Signal Model Cuttoff f
0 dB
This slide
presents a very
key concept. In
practice in
broad band
amplifier design
one CANNOT
expect to apply
a transistor
beyond T….
.MODEL nfet NMOS LEVEL=2 PHI=0.600000 TOX=4.1900E-08
XJ=0.200000U TPG=1
+ VTO=0.8123 DELTA=5.5710E+00 LD=3.0410E-07 KP=4.6869E-05
+ UO=568.7 UEXP=1.4610E-01 UCRIT=8.6360E+04 RSH=2.1170E+01
+ GAMMA=0.4675 NSUB=4.4720E+15 NFS=1.9800E+11 VMAX=5.9890E+04
+ LAMBDA=3.3370E-02 CGDO=3.7593E-10 CGSO=3.7593E-10
+ CGBO=3.9487E-10 CJ=9.2516E-05 MJ=0.7551 CJSW=4.8928E-10
+ MJSW=0.336658 PB=0.800000
C. Hutchens Chap 5 ECEN 3313 Handouts
48
The Junction FET
C. Hutchens Chap 5 ECEN 3313 Handouts
49
JFET I-V Characteristics
Cuttoff vGS  VP iD  0
Triode VP  vGS  0, vDS  vGS -VP
  v  v   v  2
iD  I DSS 21  GS   DS    DS  
VP   VP   VP  
 

Saturation
 v  2

iD  I DSS 1  GS  1  v DS 
VP 


C. Hutchens Chap 5 ECEN 3313 Handouts
50
SPICE para Review
Know
SPICE parameters
VT0
U0
TOX
KP
LAMBDA
GAMMA
CJ
CJSW
AD, AS
PD, PS
Others
W,L
si
ox
gm
gds = go

C. Hutchens Chap 5 ECEN 3313 Handouts
small signal model
cs
cg
cd
How to find the gain, ro,
and rin from SPICE data
and Qpt.
CJ0
AD,AS
CJSW
PD, PS
Others
Basic Digital Inverter
Analog/t-gate switch
I-V properties
JFET
MOSFET
51