Transcript Document
Team W3:
Anthony Marchetta
Derek Ritchea
David Roderick
Adam Stoler
Milestone 3:
Design Manager:
Feb. 4th
Steven Beigelmacher
Size Estimates/Floorplan
Overall Project Objective:
Design an Air-Fuel Ratio Controller for a small
gasoline engine with low emissions and low cost
Status
• Design Proposal (done)
• Architecture (done)
• High Level C Simulation
• Behavioral Verilog & Test Bench
• Final Algorithm & Major Functional Components
• Floorplan & Structural Verilog (done)
• Not yet simulated
• To be done
•
•
•
•
Gate Level Design
Component Layout
Chip Layout
SPICE Simulation of Entire Chip
Design Decisions (before)
• Look-up tables and comparing values for
look-up tables programmable.
• 7 SRAM blocks (1 8x8, 2 8x1, 4 7x1)
• Fixed point Multiplier for decimal numbers
• Increment output register to know when
multiplications are completed
Design Decisions (after)
• Look-up tables and comparing values
for look-up tables programmable.
• 2 SRAM blocks (1 8x10, 1 7x4)
• Fixed point Multiplier for decimal numbers (same)
• Increment output register to know when multiplications are
completed (same)
• Only one comparator is needed along with
more control logic.
SRAM Design
• Writing to SRAM
• Drive B and ~B with in and ~in
• Assert select line
• Value will be latched
• Reading from SRAM
• Assert precharge on positive edge
• Assert select on negative edge
• Low side will discharge through
transistors to GND
• High side will remain high
• Transistor sizing
• T3 must have larger resistance
than T1 (narrower transistor) so
value won’t be erased on read
• Same for T4 and T2
SRAM Design
• One 7x4 Block for Comparator Values
– Sequential accesses for comparison (only 1 comparator)
– Results stored in registers
• One 8x10 Block for Look-Up Tables
• All entries will be 12-bit entries
– Done in bit slices for simplified interconnect
Comparator Value Table
Comp
Value
0
1
2
3
4
5
6
speed
load
throttle
oxygen
0
1
2
3
4
5
6
Bit Number
7
8
9
10
11
SRAM Layout
360 um
Column Decoder
R
O
W
48 um
8 x (10x12)
Lookup Table
D
E
C
144 um
MUX
144 Decoder
um
Column
42 um
R
O
W
7 x (4x12)
Comparator Table
D
E
C
Individual
Cell
6 um
MUX
3 um
Comparator Design
For least significant bit:
a0 a0 b0 a1 b1 a2 b2 a3 b3 a11 b11 a b
For most significant bit:
a11 a11 b11 a b
Alternate Comparator Design
Subtractor
•
12
12
•
vdd
RC Adder
Overflow
sign
•
•
Look at the sign bit to see
which input is greater
This design requires that
your inputs and look-up
table values be 2C
encoded.
Or it requires that you add
a sign bit or do a
conversion
This would significantly
change our design.
Engine
Speed
12bit
Input
Reg
Manifold
Pressure
12bit
Input
Reg
before
7X1 L.U.
Control
Logic
8X8 SRAM
Look-up
2:1Mux
2:1Mux
7X1 L.U.
Fixed Point
%Oxygen
12bit
Input
Reg
8X1
SRAM
Look-up
Array Multiplier
7X1 L.U.
Throttle
Position
12bit
Input
Reg
8X1
SRAM
Look-up
12bit Output
Shift Register
OUTPUT
7X1 L.U.
Engine
Speed
Manifold
Pressure
after
12bit
Input
Reg
Control
Logic
12bit
Input
Reg
7X4
SRAM
Comparator
Look-up
12bit Register
12bit Register
%Oxygen
Throttle
Position
12bit
Input
Reg
12bit
Input
Reg
4:1Mux
2:1M
ux
=<>
3bit register
Fixed Point
Array Multiplier
8X10 SRAM
Value
Look-up
12bit Output
Shift Register
Floorplan
• Basic Parts
•
•
•
•
FA - 18µm X 11µm
HA - 5µm X 7µm
DFF - 21µm X 20µm
Xor - 10µm X 7µm
• These estimates are from downsizing 322 Fall 2002
layouts.
Floorplan
• Multiplier
144qndgqtes
11hq
11fq
11fq
210µm
…….
ha
9FA
ha
220µm
Floorplan
7X4 SRAM
300µm
Multiplier
Comparator
Registers and
control logic
8X10 SRAM
400µm
Total area: 120,000µm2
density: 0.13 trans/µm2
Metal Directionality
Updated Transistor Count
Registers (5 12-bit, shift)
2,568
SRAMS (1 8x10, 1 7x4)
6,720
Comparator
410
MUXs (2)
696
Control Logic
1,000
12-bit FP Multiplier
3,096
Decoders
1,000
TOTAL
15,490
difference
-1,958
Problems
• Figuring out how to optimize the
comparisons
• Optimizing the control logic
Questions????