Lecture10 - Brown University
Download
Report
Transcript Lecture10 - Brown University
Design and Implementation of VLSI Systems
(EN0160)
Lecture10: Delay Estimation
Prof. Sherief Reda
Division of Engineering, Brown University
Spring 2007
[sources: Weste/Addison Wesley – Rabaey/Pearson]
S. Reda EN160 SP’07
Inverter step response
• Find the step response for an inverter driving a load capacitance?
Vin (t ) u (t t0 )VDD
Vin(t)
Vout (t t0 ) VDD
Vout(t)
Cload
dVout (t )
I dsn (t )
dt
Cload
0
2
I dsn (t )
V
V
DD
2
V (t )
VDD Vt out 2
S. Reda EN160 SP’07
Idsn(t)
Vin(t)
t t0
Vout VDD Vt
V (t ) V V V
out
out
DD
t
Vout(t)
t0
t
Delay definitions
• tpdr: rising propagation delay
– From input to rising output crossing VDD/2
• tpdf: falling propagation delay
– From input to falling output crossing VDD/2
• tpd: average propagation delay
– tpd = (tpdr + tpdf)/2
• tr: rise time
– From output crossing 0.2 VDD to 0.8 VDD
• tf: fall time
– From output crossing 0.8 VDD to 0.2 VDD
S. Reda EN160 SP’07
Delay definitions continued
• tcdr: rising contamination (best-case) delay
– From input to rising output crossing VDD/2
• tcdf: falling contamination (best-case) delay
– From input to falling output crossing VDD/2
• tcd: average contamination delay
– tpd = (tcdr + tcdf)/2
S. Reda EN160 SP’07
Why should we care? Just run SPICE!
• Time consuming
• Not very useful in evaluating different options and optimizing
different parameters
2.0
1.5
1.0
(V)
Vin
tpdf = 66ps
tpdr = 83ps
Vout
0.5
0.0
0.0
200p
400p
600p
800p
1n
t(s)
We need a simple way to estimate delay for “what if” scenarios.
S. Reda EN160 SP’07
Simple RC delay models
• Use equivalent circuits for MOS transistors
– Ideal switch + capacitance and ON resistance
– Unit nMOS has resistance R, capacitance C
– Unit pMOS has resistance 2R, capacitance C
• Capacitance proportional to width
• Resistance inversely proportional to width
d
g
d
k
s
kC
R/k
kC
2R/k
g
g
kC
kC
s
S. Reda EN160 SP’07
s
d
k
s
kC
g
kC
d
Elmore delay model
• ON transistors look like resistors
• Pullup or pulldown network modeled as RC ladder
• Elmore delay of RC ladder
t pd
Ri to sourceCi
nodes i
R1C1 R1 R2 C2 ... R1 R2 ... RN C N
R1
S. Reda EN160 SP’07
R2
R3
C1
C2
RN
C3
CN
Example: 3-input NAND gate
• Sketch a 3-input NAND with transistor widths chosen to achieve
effective rise and fall resistances equal to a unit inverter (R).
2
2
2
3
3
3
S. Reda EN160 SP’07
Example: 3-input NAND gate
• Annotate the 3-input NAND gate with gate and diffusion capacitance
2C 2
2
2C
2C
2C
2
2
2
2C
2C
5C
5C
5C
S. Reda EN160 SP’07
2C
2
3C
3C
3C
3
3
3
3
3
3
2C
2C
9C
3C
3C
3C
3C
3C
3C
Computing the rise and fall delays
• Estimate rising and falling propagation delays of a 2input NAND driving h identical gates.
2
2
6C
A
2
B
2x
Y
(6+4h)C
x
R/2
S. Reda EN160 SP’07
2C
h copies
2C
R
R/2
Y
4hC
Y
(6+4h)C
t pdr 6 4h RC
t pdf 2C R2 6 4h C R2 R2
7 4h RC
Delay components
• Delay has two parts
– Parasitic delay
• 6 or 7 RC
• Independent of load
– Effort delay
• 4h RC
• Proportional to load capacitance
S. Reda EN160 SP’07
Contamination delay
• Best-case (contamination) delay can be substantially
less than propagation delay.
• Ex: If both inputs fall simultaneously
2
2
A
2
B
2x
R R
Y
(6+4h)C
S. Reda EN160 SP’07
6C
Y
4hC
2C
tcdr 3 2h RC
Diffusion capacitance
• we assumed contacted diffusion on every s / d.
• Good layout minimizes diffusion area
• Ex: NAND3 layout shares one diffusion contact
– Reduces output capacitance by 2C
– Merged uncontacted diffusion might help too
2C
Shared
Contacted
Diffusion
Isolated
Contacted
Diffusion
Merged
Uncontacted
Diffusion
2
2
2
3
3
3C 3C 3C
S. Reda EN160 SP’07
2C
3
7C
3C
3C
Layout Comparison
• Which layout is better?
VDD
A
VDD
B
Y
GND
S. Reda EN160 SP’07
A
B
Y
GND