History of the MOSFET
Download
Report
Transcript History of the MOSFET
A (partial, biased?) history of the MOSFET
from a physicist’s perspective
(i.e., A brief history of sand)
M. Fischetti
October 2, 2009
Department of Electrical and Computer Engineering
This talk: Void where prohibited, limitations and restrictions apply
Technology (i.e., how do we make them?) vs. electronic operation (i.e., how do they work
and how do we make them better?)
Too much to cover
Talk about what I know
Major omissions (that is, a disclaimer*):
• Doping: Diffusion (theory and technology), ion implantation, high-doping effects
• Lithography, possibly a “technology enabler”: Optical, contact, phase-shift, X-ray…
• Metallization: Deposition/growth, DAMASCENE, electromigration
• Etching: Wet vs. dry, RIE, plasma
• Film growth: Epitaxy, CVD, PE-CVD, MBE, ALD,…
• Contacts: Silicides, salicides, FUSI,…
• Layout issues: Isolation (deep/shallow trenches), cross-talk, latch-up, design rules,
DRAM/SRAM design, power,…
• …
Department of Electrical and Computer Engineering
MVF October 2, 2009
2
History of the MOSFET? What’s that?
Thanks to Jiseok Kim for having put me on the spot….
It’s OK… I wish him good luck in getting his PhD wherever ELSE he may wish to get it….
I’m not sure what he meant by “history”… So, let’s start from the beginning….
Department of Electrical and Computer Engineering
MVF October 2, 2009
3
The main character of our story: The MOSFET
No other human artifact has been fabricated in larger numbers (except perhaps nails?)
“…some consider it one of the most important technological breakthroughs in human
history…” (Wikipedia, the source of all human knowledge)
Department of Electrical and Computer Engineering
MVF October 2, 2009
4
Timeline I
Technology
Physics/Simulations
1925: Julius Edgar Lilienfeld’s MESFET patent
1935: Oskar Heil’s MOSFET patent
194?: Unpublished Bell Labs MESFET
1947: Ge BJT (Bardeen, Brattain, Shockley, Bell Labs)
1954: Si BJT (Teal, Bell Labs)
1955: Si, Ge conduction band (Herring&Vogt)
1960: MOSFET (Atalla&Khang, Bell Labs)
Deformation-potential, high-field (Bardeen&Shockley)
1961: Integrated circuit (Kilby, TI)
1957: BTE in semiconductors – impurities (Luttinger&Kohn),
1963: CMOS (Sah&Wanlass, Fairchild)
phonons (Price, Argyles)
1964: Commercial CMOS IC (RCA)
1964: Band structure calculations (Hermann)
1965: DRAM (Fairchild)
Monte Carlo for semiconductors (Kurosawa)
1968: Poly-Si gate (Faggin&Klein, Fairchild)
1965: Linear-parabolic oxidation model (Deal&Grove)
1968: 1-FET DRAM cell (Dennard, IBM)
1966: Observations of 2DEG (Fowler, Fang, Stiles, Stern,..)
1971: UV EPROM (Frohman, Intel)
1967: Conductance technique (Nicollian&Goetzberger)
1971: Full CPU in chip, Intel 8008 (Faggin, Intel)
1974: Digital watch
1974: DDE device simulator (Cottrell&Buturla)
1974: Scaling theory (Gänsslen&Dennard, IBM)
1975: Quantum Hall Effect predicted (Ando)
1978: Use of ion implanter
1978: Flotox EEPROM (Perlegos, Intel)
1979: Quantum Hall Effect observed (von Klitzing)
1980: Ion-implanted CMOS IC
1981: Identification of native Nit: Pb-centers (Poindexter)
1980: Plasma etching
Full-band MC (Shichijo&Hess)
1984: Scaling theory <0.25 μm (Baccarani, U. Bologna)1982: Fractional QHE observed (Störmer&Tsui, Laughlin)
1986: 0.1 μm Si MOSFET (Sai-Halasz, IBM)
1988: Full-band MC device simulator (MVF&Laux)
1991: CMOS replaces BJT also at high-end
1992: NEGF device simulator (Lake, Klimeck, et al.)
1993: DGFET scalable to 30 nm (theory, Frank et al.)
2007: Non-SiO2 (HfO2–based) MOSFET (Intel)
Department of Electrical and Computer Engineering
MVF October 2, 2009
5
Timeline II
Feature size
1975: 20 μm (tOX≈250 nm)
Main Problems
↑
SiO2 growth and instability: Ions, traps, interface
1980: 10 μm (tOX≈150 nm)
1985: 5 μm (tOX≈70 nm)
SiO2 instability during operation: electron trapping, NBTI
Hot electron effects: oxide trapping, VT shift, breakdown
1990: 1 μm (tOX≈15 nm)
Scaling: Short-channel effects (SCE), oxide, dopants
↓
1995: 0.35 μm (tOX≈8 nm)
2000: 0.18 μm (tOX≈3 nm)
….life is good…
2005: 65 nm (tOX≈1.4 nm)
2010: 32 nm (tOX≈1.2 nm?)
Scaling: SCE, insulator
Leakage: Insulator
Power: Alternative devices
Department of Electrical and Computer Engineering
MVF October 2, 2009
6
Timeline III
Feature size
Transport Physics
1975: 20 μm
1980: 10 μm
1985: 5 μm
Drift-Diffusion
↓
Hydrodynamic/
Energy transport
1990: 1 μm
1995: 0.5 μm
2000: 0.25 μm
2005: 63 nm
2010: 32 nm
2015: 16 nm ?
↕
Boltzmann
↓
Quantum?
Department of Electrical and Computer Engineering
MVF October 2, 2009
7
Transistor prehistory
1935 Heil’s patent
1947 First BJT
1960 Atalla’s MOSFET
Bardeen, Shockley, Brattain (Bell Labs)
Department of Electrical and Computer Engineering
MVF October 2, 2009
8
IC Prehistory
1961 Kilby’s first IC
1962 Fairchild IC
Department of Electrical and Computer Engineering
1964 First MOS IC
(RCA)
MVF October 2, 2009
9
Moore’s law prehistory
Gordon Moore
1965: Cost vs time
Department of Electrical and Computer Engineering
Moore’s law 1960-1975
MVF October 2, 2009
10
Moore’s law
Number of transistors/die & feature size vs time
Department of Electrical and Computer Engineering
MVF October 2, 2009
11
Microprocessor prehistory
1965: Federico Faggin
1968: Fairchild 8-bit μP
Department of Electrical and Computer Engineering
1971: Intel 8080 μP
MVF October 2, 2009
12
Memory prehistory: DRAM and EPROM
Bob Dennard (1-FET DRAM cell, 1968;
scaling theory with Fritz Gänsslen,1974)
Department of Electrical and Computer Engineering
1971 Frohman’s UV-erasable EPROM
(written by avalanche injection)
MVF October 2, 2009
13
More historical trends
Department of Electrical and Computer Engineering
J. Armstrong (ca.1989)
MVF October 2, 2009
14
Timeline II once more
Feature size
1975: 20 μm (tOX≈250 nm)
Main Problems
↑
SiO2 growth and instability: Ions, traps, interface
1980: 10 μm (tOX≈150 nm)
1985: 5 μm (tOX≈70 nm)
1990: 1 μm (tOX≈15 nm)
SiO2 instability during operation: electron trapping, NBTI
Hot electron effects: oxide trapping, VT shift, breakdown
Scaling: Short-channel effects (SCE), oxide, dopants
↓
1995: 0.35 μm (tOX≈8 nm)
2000: 0.18 μm (tOX≈3 nm)
….life is good…
2005: 65 nm (tOX≈1.4 nm)
2010: 32 nm (tOX≈1.2 nm?)
Scaling: SCE, insulator
Leakage: Insulator
Power: Alternative devices
Department of Electrical and Computer Engineering
MVF October 2, 2009
15
SiO2 growth and instability
Ionic contamination (K, Na): Unrecognized source of early problems
Fixed traps (oxygen vacancies?), especially near Si-SiO2 interface
Growth kinetics: Deal & Grove model: linear (reaction-limited) and parabolic (diffusion-limited)
regions; dry and wet oxidation rates
Interface-state passivation: Al (with H) Post Metallization Anneal (PMA, Peter Balk):
H2O → H+ + OH Si- + H+ → Si-H
Andrew Grove (left), Bruce Deal (center)
and Ed Snow (left)
Department of Electrical and Computer Engineering
Ed Snow’s cartoon, ca. 1966
about SiO2 instabilities
MVF October 2, 2009
16
SiO2 growth and instability, as-grown and during operation
CV-plot instabilities (VFB or VT shifts):
Ions (mainly Na+ and K+, contamination in chambers, handling, gases, etc…)
Interface states generation (stretch-out, Lai, Feigl, Sandia group, Technion, Siemens,…)
Electron and hole traps (DiMaria, Young, Feigl):
• Neutral: H2O-related (mainly OH-) in wet oxides, radiation induced in processing,
σ ≈ 10-15 to 10-17 cm2
• Charged-attractive: Ionic contamination, σ ≈ 10-13 cm2 , field-dependent
• Charged-repulsive: Radiation-induced, σ ≈ 10-19 cm2
Department of Electrical and Computer Engineering
MVF October 2, 2009
17
SiO2 instability during operation
Anomalous Positive Charge (APC):
Caused by electron injection (Avalanche, Fowler-Nordheim) and also hole injection
Related to Hydrogen: Boron deactivation in p-type substrates (Sah)
Related to hole back-injection from anode? Dependent on gate-metal workfunction Au vs. Al vs. Mg (MVF&Weinberg, Chenming Hu)
Occurring at Si-SiO2 interface even under negative bias: Neutral species such as
solitons, H2 diffusion…? (Weinberg).
Connected to wear-out and breakdown (DiMaria, Stathis)
Strongly correlated to interface traps (Pb-centers, Lenahan, Poindexter)
Oxygen deficiency (Revesz)? Broken Si-H bonds (Si-D experiment, Lyding&Hess)?
Negative Bias Temperature Instability (NBTI): No time to discuss, but big issue in high-κ
dielectrics
Department of Electrical and Computer Engineering
MVF October 2, 2009
18
Understanding SiO2 degradation: Two approaches
MVF and DiMaria, INFOS 1989
Department of Electrical and Computer Engineering
MVF October 2, 2009
19
SiO2 growth and instability: Injection techniques and damage generation
Department of Electrical and Computer Engineering
MVF October 2, 2009
20
SiO2 growth and instability: Electronic transport in SiO2
Electrons:
Long-standing problems of high-field electron transport in polar insulators
(Karel Thornber’s 1970 PhD Thesis with Richard Feynman)
LO-phonon scattering run-away connected to dielectric breakdown
Experimental observations do not show predicted run-away at 2-3 MV/cm
Umklapp scattering with acoustic phonons keeps electron energy under
control (MVF, DiMaria, Theis, Kirtley, Brorson, 1985)
Holes: Small polaron (self-trapping) transport (Bob Hughes’ 1977 time-of-flight
experiments explained by David Emin’s 1975 theory).
MVF et al., PR B (1985)
Department of Electrical and Computer Engineering
MVF October 2, 2009
21
Hot electron effects in constant-voltage-scaled MOSFETs
Two problems:
Understand origin/spectrum of hot carrier
Understand nature/process of damage generation
Practical problems:
Unnecessary and expensive burn-in
Wall Street “big glitch” in 1994
Theory:
Shockley’s “lucky-electron model” widespread in EE community in the ’80s
(publicized by Chenming Hu, UCB): Even the Gods can be wrong at times…
Full-band models (Sam Shichijo & Karl Hess, MVF&Laux, then others)
Basic physics of electron scattering, injection into SiO2, etc.
The mid-1990s “pseudo-full-band” frenzy (Bologna, UNC, Udine, Lille, TUVienna, Aachen,..): Gain without pain… didn’t work…
Department of Electrical and Computer Engineering
MVF October 2, 2009
22
Electron injection into SiO2
MVF, Laux, and Crabbé, JAP (1996)
Department of Electrical and Computer Engineering
MVF October 2, 2009
23
Timeline III once more
Feature size
Transport Physics
1975: 20 μm
1980: 10 μm
1985: 5 μm
Drift-Diffusion
↓
Hydrodynamic/
Energy transport
1990: 1 μm
1995: 0.5 μm
2000: 0.23 μm
2005: 63 nm
2010: 32 nm
2015: 16 nm ?
↕
Boltzmann
↓
Quantum?
Department of Electrical and Computer Engineering
MVF October 2, 2009
24
Electron transport in Si at 3 eV: A big headache
Effective-mass approximation valid only for E ≈ a few kBT
Scattering rates at E ≥ {a few kBT} totally unknown
Moments of the BTE (DDE, Hydrodynamic) not sufficiently accurate
Department of Electrical and Computer Engineering
MVF October 2, 2009
25
Electron transport in Si at 3 eV ca. 1992: A depressing picture…
The state-of-the art circa 1992
Department of Electrical and Computer Engineering
MVF October 2, 2009
26
A good example of experiments-theory feedback
XPS (McFeely, Cartier, Eklund at the
Brookhaven IBM synchrotron line, 1993)
Carrier separation (DiMaria, 1992)
Cartier et al. APL (1993)
Department of Electrical and Computer Engineering
MVF October 2, 2009
27
Electron transport in Si at 3 eV ca. 1994: Much better…
The state-of-the art circa 1994
Department of Electrical and Computer Engineering
MVF et al., JAP (1996)
MVF October 2, 2009
28
Scaling
Shrink dimensions maintaining aspect-ratio
Must shrink electrostatic features as well (depletion regions→ doping level and profiles)
↔
1 μm
1980 → 1985 → 1988 → 1991 → 1994
1994 → 1999 → 2003 …
μm 1.3
nm ….
LGATE
μm 2.5
2.5 μm
1.3 μm
μm 0.63
0.63 μm
μm 0.25
0.25 μm
μm 130
130 nm
nm
….
5 μm
GATE = 10 μm
Department of Electrical and Computer Engineering
MVF October 2, 2009
29
Scaling
Electrostatic integrity (Well-tempered MOSFET, Antoniadis): SOI, DGFETs, FinFETs, NW-FETs
Reduce power, an example: The tunnel FET n (tFET)
Reduced leakage: High-κ gate-insulators
Improve (or, at least, maintain) performance: Alternative channel materials?
Department of Electrical and Computer Engineering
MVF October 2, 2009
30
Scaling – Electrostatic integrity: SOI
22 nm strained-Si nFET: SOI to prevent punch- through,
strained Si to improve performance (B. Doris, IBM, 2006)
Department of Electrical and Computer Engineering
MVF October 2, 2009
31
Scaling – Electrostatic integrity: Double gate FET
AIST (2003)
Department of Electrical and Computer Engineering
MVF October 2, 2009
32
Scaling – Electrostatic integrity: Multibridge FETs (TEM, SEM)
Samsung Electronics Ltd. (2005)
Department of Electrical and Computer Engineering
MVF October 2, 2009
33
Multibridge FETs: Process flow
Samsung Electronics Ltd. (2005)
Department of Electrical and Computer Engineering
MVF October 2, 2009
34
Scaling – Electrostatic integrity: FinFETs
Freescale Semiconductors
Department of Electrical and Computer Engineering
MVF October 2, 2009
35
Scaling – Electrostatic integrity: Si Nanowire Transistors
KAIST (2007)
Department of Electrical and Computer Engineering
MVF October 2, 2009
36
Scaling – Reduce power: The tunnel-FET (tFET)
Stand-by power dissipation approaching “on”
power dissipation… Cannot continue like this!
60 mV/dec → ΔVG ≈ 250 mV for Ioff/Ion ≈ 10-4
VT + ΔVG ≥ 0.45 V at 300 K (nFETs)
Must increase slope (i.e., go below 60 mV/dec) if
we want the `Green’ FET (term coined by C. Hu)
Problem: Ion too low in all attempts (DARPA to
IBM, UCB, Stanford,…) so far
InAs Tunnel-FET: structure
(M. Haines, UMass 2009)
Department of Electrical and Computer Engineering
InAs Tunnel-FET: pair generation rate
(M. Haines, UMass 2009)
MVF October 2, 2009
37
Scaling – Reduce leakage
Off-leakage:
Accepted value increasing: Ioff/Ion ≈ 10-4 for the 32 nm node (used to be 10-6 or lower!)
Connected to electrostatic integrity (punch-through, junction leakage, gate leakage)
Gate leakage:
C = εox/tox, so if tox has reached its limit (≈ 1nm, too aggressive so far), scale εox:
High-κ insulators such as HfO2, ZrO2, Al2O3, etc.
Problem: Low mobility in high-κ MOS systems (scattering with interfacial optical phonons)
Metals with different workfunction needed!
Hi-res TEM from
Susanne Stemmer,
UCSB
Department of Electrical and Computer Engineering
MVF et al., JAP (2001)
MVF October 2, 2009
38
Scaling – Reduce leakage: Gate oxide scaling at Intel
Department of Electrical and Computer Engineering
C. Hu et al., IEDM (1996)
MVF October 2, 2009
39
Scaling – Improve performance
Taken for granted early on (ca. 1986)
Slow realization that early optimism was unjustified
MVF and S. Laux, EDL (1987)
Department of Electrical and Computer Engineering
MVF October 2, 2009
40
Scaling – Improve performance
Look for high-velocity, low-effective mass semiconductors… or should we?
Problems:
High-energy (≈ 0.5 eV ≈ 20 kBT) DOS and rates identical in most fcc semiconductors
Low DOS → loss of transconductance
Low DOS → smaller density in quasi-ballistic conditions → lower Ion
Low DOS → less scattering in source → source starvation
Department of Electrical and Computer Engineering
MVF October 2, 2009
41
Scaling – Improve performance: DOS bottleneck
Department of Electrical and Computer Engineering
MVF and S. Laux, TED (1991)
MVF October 2, 2009
42
Scaling – Improve performance: Strained Si
Department of Electrical and Computer Engineering
MVF and S. Laux, JAP (1996)
MVF October 2, 2009
43
Scaling – Improve performance: Strained Si
IBM 32 nm strained (tensile)
Si nFET on SiGe virtual substrate
Department of Electrical and Computer Engineering
Intel 45 nm strained (compressive)
Si pFET with regrown SiGe S/D
MVF October 2, 2009
44
Why are sub-40 nm devices getting slower?
Power dissipation → reduce frequency or fry!
Parasitics play a bigger role (Antoniadis, MIT)
Higher oxide fields squeeze carriers against interface → increased scattering
(Antoniadis, MIT)
Intrinsic Coulomb effects!
MVF and S. Laux, JAP (2001)
Department of Electrical and Computer Engineering
MVF October 2, 2009
45
Why are sub-40 nm devices getting slower? The effect of e-e interactions
Department of Electrical and Computer Engineering
MVF October 2, 2009
46
Sub-32 nm Si CMOS devices: Where do we stand?
22 nm: Planar (Intel), SOIs (IBM), FinFETs doable but too expensive.
16 nm: Possibly FinFETs, still Si
Below 16 nm:
Ge pFETs and III-V nFETs (IMEC)? A pipedream…
Ge nFETs still lousy, improvements promised at Dec 2009 IEDM, we’ll see
III-Vs in the works:
• MIT (del Alamo): Great HEMTs, but huge S/D-gate gap not easily scalable
• SRC/UCSB MOSFETs: Wait and see…
Department of Electrical and Computer Engineering
MVF October 2, 2009
47
The future and “post Si CMOS” devices: What do we need?
Three terminal devices (Josephson computers taught us something…!)
At least some gain (preserving signal over billions of devices, beating kBT)
At least a few devices must have high Ion to charge external loads
On/off behavior (Landauer’s water faucet analogy)
Low power, possibly non-charge-switching (spins, QCA,…). BUT: If we use ≈ kBT to
switch, the heat bath will switch for us even if we do not want to…
Notable historic failures:
Josephson: Excessively strict tolerances (on insulators), complicated 2-terminal logic
SETs: No output current (`a slight impedance matching issue’, as someone kindly put
it….)
Optical computers: Photons are huge! Clumsy 3-terminal devices
Resonant tunneling diodes and multi-state logic: Non off-off switches, impossible to
control manufacturing tolerances
High hopes:
Nanowires: They are just thin and narrow FinFETs
Long shots:
Spins and QCA: Low power but no gain
CNT: No current in single tube, must use many in parallel
III-Vs: Battle already lost in 1991 (DOS bottleneck),,, why bother again?
Department of Electrical and Computer Engineering
MVF October 2, 2009
48
And by popular demand… The future of “post-Si CMOS” logic technology
Department of Electrical and Computer Engineering
MVF October 2, 2009
49
More slides about the lunatic fringe….
Department of Electrical and Computer Engineering
MVF October 2, 2009
50
The lunatic fringe: Exploratory devices
Department of Electrical and Computer Engineering
MVF October 2, 2009
51
The lunatic fringe: Exploratory devices
Department of Electrical and Computer Engineering
MVF October 2, 2009
52
The lunatic fringe: Exploratory devices
Carbon NanoTube (CNT) FET
IFF-Jülich, Germany (2004)
Department of Electrical and Computer Engineering
MVF October 2, 2009
53
CNT Transistors
IFF-Jülich, Germany (2004)
Department of Electrical and Computer Engineering
MVF October 2, 2009
54
CNT FET inverter
J. Appenzeller, IBM
Department of Electrical and Computer Engineering
MVF October 2, 2009
55