TRImP Trapped Radioactive Isotopes

Download Report

Transcript TRImP Trapped Radioactive Isotopes

KVI – Groningen
Fundamental Interactions
Klaus Jungmann
RECFA Meeting, Amsterdam, 23 September 2005
AGOR
KVI – Groningen
Fundamental Interactions
Klaus Jungmann
RECFA Meeting, Amsterdam, 23 September 2005
AGOR
22 scientists ~20 students ~ 100 people total
 8 MЄ annual running budget
KVI – Groningen
Fundamental Interactions
Klaus Jungmann
RECFA Meeting, Amsterdam, 23 September 2005
AGOR
• Science
• Education:
International Research School FANTOM
(NL,F,B,D,S) study weeks e.g. on
Neutrinos in Physics and Cosmology
KVI – Groningen
Fundamental Interactions
Up to recentlty:
Continued
Future:
2007
Funding
- 2013
Klaus Jungmann
RECFA Meeting, Amsterdam, 23 September 2005
ScientificPrograms
ScientificPrograms
AGOR
•• AGOR
+ irradiation
TRImP
•• TRImP
•• Astroparticle
Interacting
Hadrons
Physics
Astroparticle
Physics
KVI Partnership
Program
• Nuclear
Structure
Collaboration
withand
GSIits
Implications
forPhysics
• Accelerator
Astrophysics
• Atomic Physics
• Atomic
Physics
• Nuclear
Structure
• Nuclear
Geophysics
Nuclear
Astrophys.
• PANDA
AGOR
KVI – Groningen
Fundamental Interactions
Klaus Jungmann
RECFA Meeting,Amsterdam, 23 September 2005
TRImP
Trapped
Radioactive
Isotopes:
microlaboratories for
fundamental
Physivs
AGOR
Users Facility
Scientific FOCUS on:
Fundamental Symmetries and
Interactions
CP / T - violation
 b-decays
 EDM searches
TRImP
Trapped Radioactive Isotopes:
microlaboratories for Fundamental Physics
Theory
Nuclear
Physics
Atomic
Physics
Experiment
Nuclear
Physics
people (scientists):
funding:
G. Berg, U. Dammalapati, S. De, S. Dean, P. Dendooven,
O. Dermois, M.N. Harakeh, R. Hoekstra, K. Jungmann,
A. Mol, R. Morgenstern,C.J.G. Onderwater, A.
Rogachevskiy, O.Scholten, M. Sohani, R. Timmermans,
E. Traykov, L. Willmann, H.W. Wilschut
project
2001


+ many more colleagues providing support
program
2013
Fundamental Interactions – Standard Model
Gravitation
Magnetism
Electro Magnetism
Maxwell
Electricity
Physics within the Standard
Glashow,
Salam, t'Hooft,
Model
Veltman,Weinberg
?
Weak
Electro - Weak
Standard Model
Strong
not yet known?
Grand
Grant
Unification
Physics outside Standard Model
Searches for New Physics
Some Questions related to TRImP Physics
• Origin of Parity Violation in Weak Interactions
• (nature prefers lefthandedness)
 details of b-decays
Na, Ne, Ca isotopes
• Dominance of Matter over Antimatter in Universe ?
CP - Violation, Time Reversal Symmetry, Parity Violation
 permanent Electric Dipole Moments ?
Ra isotopes
Deuterons
TRImP
Possibilities to Test New Models

High Energies
& Direct Observations
Low Energies
& Precision Measurement
TRImP
New Interactions in Nuclear b-Decay
In Standard Model:
Weak Interaction is
V-A
In general b-decay
could be also
S , P, T
Vector [Tensor]
b[+ ]
ne
Scalar [Axial vector]
[ ]
b+
ne
• R and D test both Time Reversal Violation
• D  most potential
• R  scalar and tensor (EDM, a)
• technique D measurements yield a, A, b, B
TRImP
New Interactions in Nuclear b-Decay
In Standard Model:
Weak Interaction is
V-A
21Na
(Berkeley)
Scielzo,Freedman, Fujikawa, Vetter
PRL 93, 102501-1 (2004)
In general b-decay
could be also
S , P, T
a exp = 0.5243(91)
a theor = 0.558(6)
38mK
} b-branching?
(TRIUMF)
A. Gorelov et al.
PRL 94, 142501 (2005)
a exp = 0.9978(30)(37)
a theor = 1
TRImP
Radium Permanent Electric Dipole Moment
6
EDMs violate
- Parity
- Time Reversal
-CP Symmetry
Advantage over “best“ atom so far (199Hg)
- close states of opposite parity
 several 10 000 enhancement possible
- some nuclei strongly deformed
 may give nuclear enhancement
Some EDM Experiments compared
New 2004 from muon g-2:
d (muon) < 2.8 10-19
molecules:
199Hg
1.610-27
•
•
Radium potential
Start TRImP
de (SM) < 10-37
after E.Hinds
TRImP
Possible Sources of EDMs
Magnetic
Separator
Ion
Catcher
RFQ
Cooler
Atomic Physics
Production
Target
Nuclear Physics
AGOR
cyclotron
Particle Physics
Magnetic separator
Q
MeV
D
Q
D
Q Q
D
Q
Q
D
keV
Production
target
Q
Q
eV
meV
MOT
Beyond the
Standard
Model
TeV Physics
TRImP Facility
Ion catcher (thermal ioniser or gas-cell)
RFQ cooler/buncher
neV
MOT
Low energy beam line
MOT
AGOR cyclotron
Degrader selection
21Na
80 kcps / 25pnA 21Ne
Focal plane dE detector: dE-TOF
L. Achouri et al.
TRImP
laser lab
Theory
Atomic
Nuclear
Physics
Physics
Experiment
Nuclear
Physics
separator
TRImP
• TRImP
• KVI
Key Issues and Experiments
will be a user facility
 open to outside users (first users from France already in 2004!)
will concentrate first on
 CP/ T violation – electroweak tests
* b- decay (20,21Na, 19Ne, 39Ca)
* electric dipole moments (Ra, d )
 applications
* ALCATRAZ (rare Ca isotope detection)
TRImP
The ALCATRAZ Experiment
a precursor for TRImP
(R. Hoekstra, R. Morgenstern et al.)  Early Spin Off
10-12 sensititivity reached  working towards 10-14
41Ca
TRImP
• TRImP
• KVI
Key Issues and Experiments
will be a user facility
 open to outside users (first users from France already in 2004!)
will concentrate first on
 CP/ T violation – electroweak tests
* b- decay (20,21Na, 19Ne, 39Ca)
* electric dipole moments (Ra, d )
 applications
* ALCATRAZ (rare Ca isotope detection)
• OUTSIDE USERS
21Na
branching ratio (France)
* 19Ne lifetime (USA)
* d-EDM ring experiment
(USA, Russia, Italy, Germany …)
* 12N, 12B b-decays into 3 a (Scandinavia)
* single ion parity experiments (USA)
…
*
 completed
 completed
 on its way
 LOI
 discussed
TRImP
AGOR is Indispensable for TRImP at KVI
 Precison experiments require
time to develop: AGOR & KVI ideal
( compare ISOLDE @ CERN
or AD @ CERN )
 Various upgrades and adaptations
• New Beams
• e.g. 208Pb
• new sources (metals)
• improved transmission
• …..
• High Power ( 100W…1 kW)
• new extraction
• beam stops
• beam monitoring
• …..
 S . Brandenburg &Co
muon g-2
Spin precession
in (electro-)
magnetic field
(g-2)m: Result after a long series
of precision measurements and
theory effort
charged particle EDM
including
KLOEMeasurement
Spin precession
in (electro-)
magnetic field
am - 11 659 000 ∙ 10-10
(g-2)m a
challenge for theory
muon g-2
Spin precession
in (electro-)
magnetic field
d
charged particle EDM
Spin precession
in (electro-)
magnetic field
d
d
Searches for EDMs in charged particles:
Novel Method invented
Motional Electric Fields exploited
International Collaboration
(USA, Russia, Japan, Italy,
Germany, NL, …)
R0 1..2 m
• 3 possible sites discussed:
BNL, KVI, Frascati
• Limit dD <10-27 …10-29 e cm
• Can be >10 times more
sensitive than neutron dn
 G. Onderwater et al.
TRImP
Goals of TRImP @KVI
• Study fundamental interactions using stored (radioactive)
isotopes
• A facility is created for KVI scientists and outside users
(the first groups are already active, proposals P01,P02,P03,P04 )
General Time Lines
• Project started 2001; setup facility until end 2005
• Exploitation of facility until 2013 (also in new FOM strategic plan from 2004)
• TRImP became a managed program in July 2001
Facility Setup is more or less on Schedule
• Opportunities for low energy
Fundamental Symmetries and Interaction research
• TRImP Facility ready for first users
Thank YOU !
The World according to Escher
P
C
matter
mirror image
anti-particle
e+
particle
e-
T
anti-matter
time 
 time
from H.W. Wilschut
Generic EDM Experiment
Preparation
of
“pure“ J state
Polarization
Interaction
with
E - field
Analysis
of
state
Spin Rotation
Determination
of Ensemble
Spin average
Electric Dipole Moment:
Spin precession :
d = h mx c-1 J
e 
dE
EJ
h
EJ 
Example: d=10-24 e cm, E=100 kV/cm, J=1/2
e  15.2 mHz