Photosynthesis

Download Report

Transcript Photosynthesis

PHOTOSYNTHESIS
AND
CELLULAR RESPIRATION
By: Diana Boyle, Jordan Capelle,
Ross Dairiki, and Erika Keer
Basic Info.
 Definition: process of using sunlight (light energy) to
turn carbon dioxide & water into glucose (chemical
energy) & oxygen
 Equation:
6CO2 + 6H2O --> C6H12O6 + 6CO2
 Location: chloroplast of cell
 2 part process: Light-Dependent (“Light”) Reactions,
Light-Independent (“Dark”) Reactions
Diagram of a Chloroplast:
Light-Dependent Reactions
 Also known as “light” reactions
 Definition: Uses energy from sunlight to split H2O and
produces ATP (form of energy) & NADPH (electron
carrier) as well as O2 (waste product)
 Location: thylakoid membrane of chloroplast
- Membrane=studded with protein-complexes
- Contains primary electron acceptor
- Contains light-absorbing pigments
- Primarily chlorophyll a and chlorophyll b
- Accessory pigments (help plants use more light
since each pigment absorbs specific wavelength)
2 types:
1) Linear Electron Flow 2) Cyclic Electron Flow
Linear Electron Flow
 Photosystem II: Contains reaction center called p.
680 (absorbs 680 nm light best)
 Photosystem I: Contains reaction center called p. 700
(absorbs 700 nm light best)
Steps of Linear Electron Flow:
1) Light hits antenna pigments of PSII, which
passes energy to chlorophyll a, exciting some of
its electrons; it gets replacement electrons from
H20 molecules, leaving O2 and H+ ions in the
lumen
2) As energized e- pass along proteins in the
membrane (called electron transport
system/ETS), some of the electron transport
energy is used to pump H+ ions into the lumen
3) The e- go to PSI and replace electrons lost by
p700 when it was hit by light
Steps of Linear Electron
Flow (continued)
4) The excited e- from PSI go along membrane
proteins to NADP+, which then forms NADPH in
the stroma, absorbing H+ ions
5) The H+ pumped into the lumen (and H+
removed from stroma by NADP+) form a
chemiosmotic gradient, which is used for
synthesis of ATP as those H+ ions return to the
stroma by way of a special protein in membrane
 ATP synthase
Cyclic Electron Flow
1) Light energy energizes an electron from PSI
2) e- travels through ETS proteins; this pumps H+ into the
lumen
3) e- returns to PSI; a chemiosmotic gradient is used to
make ATP
LightIndependent(Dark
) Reactions/Calvin
Cycle
Definition: The
process of fixing CO2
into glucose using
NADPH and ATP from
the light-dependent
reactions
Steps:
1) 6 CO2 join with 6 RuBP (Ribulose Bisphosphate) with
help of RuBisco enzyme (Ribulose Bisphosphate
Carboxylase) to form unstable 6-carbon molecule
2) 6 6-carbon molecules split into 12 13-PG (3phosphogylcerate) molecules
3) Energy and a phosphate from 12 ATP are added to the
3-GP forms 12 13-BPG (1, 3-BisphosphoGlycerate)
4) 12 NADPH turn 12 1, 3-BPG into 12 G-3P
(Glyceraldehyde 3-Phosphate)
5) 2 of 12 G-3P become 6 RuP (Ribulose Phosphate)
6) Energy and P from 6 ATP turn 6 RuP (Ribulose
Phosphate) into 6 RuBP  cycle begins again
The following music video includes some general information
about photosynthesis to provide a break from slides! Sorry for
the freeze frames, they were needed to sync timing.
Enjoy! 
C3, C4, and CAM plants
 C3 plants: use CO2 to first make a 3 carbon molecule in
the Calvin Cycle (normal photosynthesis plants)
 Photorespiration: RuBisco by mistake adds O2 instead of CO2
when conditions are hot, dry, bright
 Takes energy to remove O2 and return RuBP for use in Calvin Cycle
 Occurs when [CO2] is low and [O2] is high
 C4 plants: 1st add CO2 to make a 4 carbon molecule
 Special structure: mesophyll cells do light reactions and C4 carbon
fixation
 PEP carboxylase adds CO2 to PEP to make 4 carbon molecules
 4 carbon molecules go to bundle sheath cells. Bundle sheath cells (around
vascular tissue)=specialized for doing Calvin Cycle. Remove CO2 from 4 carbon
molecule so it can be used in the Calvin Cycle. ATP recycles PEP& returns it to
mesophyll cells
 CAM plants: absorb CO2 at night to make an acid, then
break that down during the day to provide CO2 for the
Calvin Cycle to make glucose (acid metabolism)
Cellular Respiration!
 Definition: Breakdown of molecules to gain energy (ATP),
catabolism
 Equation:
C6H12O6 + 6O2  6CO2 + 6H20 + Energy
(ATP)
 Reverse of photosynthesis
 Location: mitochondria (aerobic)/cytoplasm (anaerobic &
aerobic)
Type 1: Anaerobic
Respiration
 Does NOT require O2, occurs in cytoplasm &
has two parts
 Part 1: Glycolysis: splits glucose to make
pyruvate and gets some energy (ATP)
 Part 2: Fermentation: allows glycolysis to
continue, recycles NADH back to NAD + (does
not generate ATP)
Glycolysis
(Occurs in the mitochondrial matrix)
1.2 ATP added to glucose turns into fructose 1,6-
bisphosphate, making it easier to split, can’t diffuse from
cell (energy SPENT)
1.Fructose 1,6-bisphosphate splits forms 2 G3P molecules
1.2 Phosphates & NAD+s come in; the NAD+ takes 2
electrons becomes NADH, while P is stuck on, turning each
G3P into 1,3-bisphosphoglycerate (1,3-BPG)
2.2 1,3-BPG lose 2 P to 2 ADP creates 2 ATP; 2 1,3-BPG
become 2,3-phosphoglycerates (3-Pg)
Fermentation
 Pyruvate can become CO2, alcohol, lactic acid (humans
do lactic acid fermentation when not enough O2 is
present, as in heavy exercise)
 Net energy gain for anaerobic respiration (glycolysis &
fermentation)=2 ATP/glucose
Type 2: Aerobic
Respiration
 REQUIRES O2, occurs in cytoplasm then
mitochondria.
 3 parts:
1) Glycolysis
2) Citric Acid Cycle
3) Electron Transport System
Steps of Citric Acid Cycle:
1. Pyruvate loses a CO2 and NADH is formed
2. Coenzyme A combines with C, forming Acetyl-CoA, which
immediately combines with oxaloacetate, forming citric acid;
Acetyl-CoA falls back off to be recycled
3. Citric Acid turns into isocitrate, then NAD+ pulls off 2
electrons, turning into NADH; this makes Co2 fall off, forming
alpha-ketoglutarate, turning into succinyl-CoA;
NADH=formed as CO2 falls off
4. CoA falls off, forming succinate; some energy from
this=used to form GTP (transfers the energy to ATP)
5. FAD takes 2 electrons from succinate, making FADH2;
succinate becomes fumarate
6. Fumarate becomes malate, which loses 2 electrons to NAD+
creating NADH and re-creating original oxaloacetate
(Oxes Are Crazy In Kansas. So Should Foxes Marry Oxes?)
ETS/Chemiosmotic
(oxidative)
photophosphorylation
 Uses electrons from NADH and FADH2 to create an H+
gradient for ATP synthesis
 Location: cristae of mitochondria (folds in membrane)
Steps:
 NADH and FADH2 drop off e- on the ETS
 e- pair from NADH have enough energy to pump 10
H+
 Electron pair from FADH2 have enough energy to
pump 6 H+
 Electrons eventually end up on O2, forming H2O
 About every 4 H+ ions, as they go out the ATP
synthase channel
ENERGY
 ATP created by ETS:
2 NADH (glycolysis) 3 ATP
8 NADH (Kreb’s cycle) 20 ATP
2 FADH2 (Kreb’s cycle) 3 ATP
 The net energy gain (for
2 pyruvates/1 glucose):
1 ATP  2 ATP
2 NADH  8 NADH
1 FADH2  2 FADH2
 Energy gain (theoretical)
from 1 glucose for
aerobic respiration:
Glycolysis 2 ATP
Kreb’s Cycle 2 ATP
ETS 26 ATP
TOTAL=30 ATP
Bibliography
 Textbook Website in general:
CHAPTER 38- Parts of flower, fertilization, male/female
gametophytes, hummingbird, double fertilization, seed structure,
origin of fruits, and preventing self-fertilization CHAPTER 39Reception and transduction and response, flowering hormone, and
avirulent defense responses
http://view.ebookplus.pearsoncmg.com/ebook/launcheText.do?value
s=bookID::4487::platform::1004::invokeType::lms::launchState::go
ToEBook::scenarioid::scenario3::logoutplatform::1004::platform::10
04::scenario::3::globalBookID::CM81419602::userID::1911037::pa
geid::::hsid::5434934bda1919e8fb46a13ad18940ba
 (Chloroplast)-
http://www.google.com/imgres?imgurl=http://www.biologycorner.co
m/resources/chloroplast_labeled.jpg&imgrefurl=http://www.biologyco
rner.com/APbiology/cellular/notes_cells2.html&usg=__jt46BLhGK2kXt
fsnXvEk_pehTOI=&h=273&w=240&sz=19&hl=en&start=1&zoom=1&t
bnid=0GPQ6DgB0MPpSM:&tbnh=113&tbnw=99&ei=OeGWT8acB6rAiQ
fc4ZWgCg&prev=/search%3Fq%3Dlabeled%2Bchloroplast%26um%3
D1%26hl%3Den%26sa%3DN%26gbv%3D2%26tbm%3Disch&um=1
&itbs=1
Bibliography Cntd.
 (Linear electron flow)http://www.bio.miami.edu/dana/pix/noncyclic.jpg
 (Cyclic electron flow)http://kvhs.nbed.nb.ca/gallant/biology/cyclic_electron_flow.jpg
 (C3 and C4 plant)-
http://www.google.com/imgres?q=c3+and+c4+plants&hl=en&biw=1
203&bih=629&gbv=2&tbm=isch&tbnid=HVXznDU79kIssM:&imgrefurl
=http://www.nature.com/scitable/content/each-plant-species-utilizesone-of-several13311179&docid=ST2PXVLQNsCjcM&imgurl=http://www.nature.com/
scitable/content/ne0000/ne0000/ne0000/ne0000/13311179/taub_figu
re2_ksm.jpg&w=500&h=384&ei=sHSdT9fpC8nMiQKx8fBE&zoom=1&i
act=hc&vpx=828&vpy=178&dur=661&hovh=197&hovw=256&tx=134
&ty=110&sig=112547099696337624223&page=1&tbnh=122&tbnw=
159&start=0&ndsp=18&ved=1t:429,r:4,s:0,i:91
Bibliography Cntd.
 (CAM plant)-
http://www.google.com/imgres?q=c3+and+c4+plants&hl=en&biw=1203&bih=
629&gbv=2&tbm=isch&tbnid=5WnTnII7WaFSM:&imgrefurl=http://ihatecreataccount.blogspot.com/&docid=u6rKD
-Gr1qVHqM&imgurl=http://4.bp.blogspot.com/8mocbeEDyAE/TfzKBj9B4lI/AAAAAAAAABA/-l-B3ghAZ3s/s1600/C4-and-CAMplants.jpg&w=614&h=602&ei=sHSdT9fpC8nMiQKx8fBE&zoom=1&iact=hc&vpx
=937&vpy=73&dur=383&hovh=222&hovw=227&tx=155&ty=169&sig=112547
099696337624223&page=1&tbnh=122&tbnw=124&start=0&ndsp=18&ved=1t:
429,r:5,s:0,i:93
 (Mitochondria)http://www.google.com/imgres?q=mitochondria&num=10&hl=en&gbv=2&biw=
1203&bih=629&tbm=isch&tbnid=7G9QL6X6c6JrGM:&imgrefurl=http://micro.m
agnet.fsu.edu/cells/mitochondria/mitochondria.html&docid=Fzfn06XMo1mlM&imgurl=http://micro.magnet.fsu.edu/cells/mitochondria/images/mitoc
hondriafigure1.jpg&w=296&h=312&ei=93SdT6maF9PbiALUtPRg&zoom=1&iact
=rc&dur=403&sig=112547099696337624223&sqi=2&page=1&tbnh=124&tbnw
=118&start=0&ndsp=19&ved=1t:429,r:1,s:0,i:109&tx=45&ty=26
Bibliography Cntd.
 (Calvin Cycle)http://www.emc.maricopa.edu/faculty/farabee/biobk/alcferm.gif
 (Fermentation)http://galvez-808.cghub.com/files/Image/086001087000/86629/095_stream.jpg
 (Sun)-
http://www.google.com/imgres?q=the+sun&um=1&hl=en&sa=N&biw
=1203&bih=629&tbm=isch&tbnid=eRnRauaHGhZV4M:&imgrefurl=htt
p://www.bobthealien.co.uk/sun.htm&docid=2Zh8xL_2UaBKCM&imgur
l=http://www.bobthealien.co.uk/sunmain2.png&w=320&h=320&ei=l4
udT72rDqGSiQKrn7x4&zoom=1&iact=rc&dur=205&sig=11254709969
6337624223&page=1&tbnh=125&tbnw=124&start=0&ndsp=21&ved
=1t:429,r:12,s:0,i:160&tx=94&ty=74
Bib Cntd.
 (Tomato)http://www.google.com/imgres?q=tomatoes&um=1&hl=en&sa=N&bi
w=1203&bih=629&tbm=isch&tbnid=DcjM3eIeLrVNM:&imgrefurl=http://www.bewellbuzz.com/general/wh
at-you-didnt-know-about-tomatoes/&docid=rciXKvrxbp8xM&imgurl=http://cdn.bewellbuzz.com/wpcontent/uploads/
2009/06/tomatoes=293x300.jpg&w=293&h=300&ei=Bo2dT6PfLsjhiA
KH3OmkAQ&zoom=1&iact=hc&vpx=672&vpy=168&dur=233&hovh=
227&hovw=222&tx=128&ty=73&sig=112547099696337624223&pag
e=1&tbnh=132&tbnw=129&start=0&ndsp=20&ved=1t:429,r:4,s:0,i:
143
 (Reception, transduction, response)-
http://view.ebookplus.pearsoncmg.com/ebook/launcheText.do?values
=bookID::4487::platform::1004::invokeType::lms::launchState::goT
oEBook::scenarioid::scenario3::logoutplatform::1004::platform::100
4::scenario::3::globalBookID::CM81419602::userID::1911037::pagei
d::::hsid::5434934bda1919e8fb46a13ad18940ba
Bib Cntd.
 (Gravitropism leaf)-
http://www.google.com/imgres?q=gravitropism&hl=en&gbv=2&biw=
1203&bih=651&tbm=isch&tbnid=DyjaGkCPk7oHBM:&imgrefurl=http:
//herbarium.desu.edu/pfk/page8/page9/page9.html&docid=zfQ1M6Re
vvnjYM&imgurl=http://herbarium.desu.edu/pfk/page8/page9/files/pa
ge9_1.jpg&w=301&h=265&ei=QS6eT-4G5JqIAuyFHg&zoom=1&iact=rc&dur=488&sig=112547099696337624223&page
=1&tbnh=145&tbnw=165&start=0&ndsp=19&ved=1t:429,r:3,s:0,i:7
6&tx=104&ty=67
 (Herbivore)http://www.google.com/imgres?q=herbivores&um=1&hl=en&sa=N&
biw=1203&bih=629&tbm=isch&tbnid=NcMGzieuixaetM:&imgrefurl=h
ttp://www.qrg.northwestern.edu/projects/marssim/simhtml/info/wha
ts-aherbivore.html&docid=4j8edxN7tTtbCM&imgurl=http://www.qrg.nort
hwestern.edu/projects/marssim/simhtml/pics-forsim/pronghorn.jpg&w=215&h=198&ei=FC-eT8DKeSpiALYyeCcAQ&zoom=1&iact=rc&dur=291&sig=1125470996963
37624223&page=1&tbnh=125&tbnw=123&start=0&ndsp=20&ved=1
t:429,r:0,s:0,i:135&tx=86&ty=40
Bib Cntd.
 (Grafting)-
http://www.google.com/imgres?q=grafting+of+plants&num=10&um
=1&hl=en&biw=1203&bih=651&tbm=isch&tbnid=oSjdfEPHjhuwiM:&i
mgrefurl=http://anpsa.org.au/grafting.html&docid=O4TojW7M8_dPM
M&imgurl=http://anpsa.org.au/gif/grafta.gif&w=261&h=341&ei=ryKe
T4KNJ4NigLBqMWZAQ&zoom=1&iact=rc&dur=382&sig=11254709969633762
4223&sqi=2&page=1&tbnh=133&tbnw=102&start=0&ndsp=21&ved=
1t:429,r:8,s:0,i:84&tx=63&ty=44
 (Pathogen)http://www.google.com/imgres?q=pathogen&um=1&hl=en&sa=N&bi
w=1203&bih=629&tbm=isch&tbnid=v2OabBWgeetIRM:&imgrefurl=h
ttp://www.beltina.org/health-dictionary/pathogen-definition-whatis.html&docid=LpmLvh6jzfJ3dM&imgurl=http://www.beltina.org/pics/
pathogen.jpg&w=291&h=284&ei=YCeT7v9D8muiAL9wtCiAQ&zoom=1&iact=hc&vpx=112&vpy=167&dur=
740&hovh=222&hovw=227&tx=140&ty=135&sig=112547099696337
624223&page=1&tbnh=126&tbnw=130&start=0&ndsp=21&ved=1t:4
29,r:0,s:0,i:135
Bib Cntd.
 (Hypersensitive response leaf)-
http://www.google.com/imgres?q=hypersensitive+response&um=1&
hl=en&sa=N&biw=1002&bih=524&tbm=isch&tbnid=6osVRRAmmlx0t
M:&imgrefurl=http://www.sidthomas.net/SenEssence/Development/d
evexamples.htm&docid=0hSHRJW6boWvbM&imgurl=http://www.sidt
homas.net/images/hypersensitive.jpg&w=400&h=300&ei=3DOeT8Pm
GYSXiALWtKCeAQ&zoom=1&iact=rc&dur=483&sig=11254709969633
7624223&page=1&tbnh=159&tbnw=218&start=0&ndsp=8&ved=1t:4
29,r:1,s:0,i:71&tx=126&ty=59