bIOCHEMISTRY - East Pennsboro Area School District

Download Report

Transcript bIOCHEMISTRY - East Pennsboro Area School District

The Chemical Composition
of Living Things

Four main elements
that make up 96% of
the human body:




Carbon
Nitrogen
Oxygen
Hydrogen

Inorganic Cmpds:


Do NOT contain C
Exception to rule
 CO2
 Examples:





Water
Minerals
Metals
Sand
Rock


Carbon molecules
Importance of Carbon
Forms 4 strong stable
covalent bonds
 Form single, double
& triple bonds



Polymerization –
building of complex
molecules

 Single unit



Carbohydrates
Fats
Proteins
Polymer
 Multiple repeating
Examples:

Monomer
units

Macromolecule
 Large chain of
compounds

Dehydration Synthesis



Hydrolysis
Dehydration

 Loss of water

Synthesis

 Creation


Build organic
molecules
Create bonds = store
energy
 Humans – protein
production
 Plants – fruit & veggie
production

Hydro – water
Lysis – splitting
Break organic
molecules apart
Break bonds = release
energy
 Digestion – release
energy from food

Molecular Formula



Structural Formula
# elements in a
compound
Example:

 H2 O

 CH4
 C6H12O6

Picture of compound
Shows arrangement
& bond type
Example:
H
H
C
H
H


Must contain Carbon
Hydrocarbon:



Simplest organic
Chains of carbon
connected by single,
double or triple
bonds
Remaining bonds are
filled with hydrogen

Ex: _________
C
C
C
C

Ex: _________

C C
C
C
Ex: _________
C
C
C
C

Hydroxyl:

Also called Alcohols

Abbreviated:

Ex: Ethanol

Carboxyl:

Create acids

Abbreviated:

Ex: acetic acid

Carbonyl:


Given different
names based on
location w/in
molecule
Aldehyde – end

Ketone – middle

Ex: Formaldehyde

Amine:

Create bases

Abbreviated:

Examples:

Identifying Organics
Is Carbon present?
1.


Yes – Organic
No - Inorganic
Is Nitrogen present?
2.


Yes – Protein
No – Carb or Lipid
Is there a 2:1 ratio of
Hydrogen to Oxygen
3.


Yes – Carb
No - Lipid

Monosaccharides



Simple sugars
Building blocks of
carbs
Examples

Disaccharides



Double sugars
Created thru
dehydration synthesis
Examples
 Glucose – C6H1206
 Sucrose – C12H22011
 Galactose – C6H1206
 Maltose – C12H22011
 Fructose - C6H1206
 Lactose - C12H22011

Polysaccharides


Very long chains of
monosaccharides
Examples:

Functions:

 Simple – instant
 Complex – longer lasting
 Stored energy
 Starch
 Plants  cellulose
 Animals  glycogen (liver)
 Cellulose (fiber)
 Glycogen
 Chitin
Energy

Structural Support
 Cellulose stems & leaves
 Chitin  insect
exoskeletons
Glucose
Fructose
Alpha – glucose (Starch)
Beta-glucose (Cellulose)

Building Blocks

Glycerol

3 Fatty Acids

Functions:



Functions:
Long term energy

 Hibernation

Protection
 Internal organs
 Insulation
Cell membranes
Chemical Messengers
 Surround nerves brain
 Hormones

Saturated Lipids





Saturated “full”
Hydrogen
Carbons of fatty acids
all joined by – bonds
Found – animals
Solid
Cholesterol – “bad
fat”

Unsaturated Lipids





Less hydrogen
Carbons of fatty acids
joined by = bonds
Found – plants & fish
Liquids
Healthier – “good
fats”

1 Glycerol model

3 Fatty Acids

Amino Acids



Building blocks
20 different A. A’s
Same basic structure except for “R” group


Also called polypeptides
Functions:
Movement – muscle
 Transport – blood
 Protection – immune system
 Structures – hair, horns, nails, silk, feathers



Building blocks – nucleotides
Function



Store genetic information
Create proteins
Examples:


DNA – deoxyribonucleic acid
RNA – ribonucleic acid
glycine
alanine

Terms:


Substrate – what is
broken down
Active site – area
where enzyme &
substrate connect

Lock & Key Theory


Extremely specific
Unique shape of an
enzyme allows it to
connect with only 1
substrate

Changes to Reaction Rates:
Coenzyme - partner (speed up rxn rate)
 Competitive Inhibitor – substance that blocks the
active site & prevent “lock & key” fit (slow rxn rate)
 Denature - Enzyme loses its shape (slow rxn rate)
