Herrmann et al. 2016, PPEES 19, 40-48
Download
Report
Transcript Herrmann et al. 2016, PPEES 19, 40-48
Endogenous rhythmic growth, a trait suitable
for the study of interplays between multitrophic
interactions and tree development
Herrmann S.1, Grams T.E.E. 2, Tarkka M.T.1, Angay O.2, Bacht M.3, Bönn M.1,
Feldhahn L.1, Graf M.4, Kurth F.1, Maboreke H.5, Mailander S.6, Recht S.1,
Fleischmann F. 2, Ruess L.5, Schädler M.1, Scheu S.4, Schrey S.6, Buscot F.1
1.
2.
3.
4.
5.
6.
Helmholtz Centre for Environmental Research (Halle, Saale),
Technical University Munich,
University of Marburg,
University of Göttingen,
Humboldt University Berlin,
University of Tübingen
www.TrophinOak.de
Herrmann et al. 2016, PPEES 19, 40-48
TrophinOak platform: DF159, a clone of Q. robur
shoots + leaves
Lateral roots
Microcosms
At 25°C and a 16/8 day/night light regime oaks
display endogenous rhythmic growth with
alternating flushes in root and shoots
Harmer R 1990, New Phytol 115, 23-37
Page 2
Synthesis of biotic interactions on
rhythmic growing trees in Microcosms
Herrmann et al. 2016, PPEES 19, 40-48
Objectives of TrophinOak
Herrmann et al. 2016, PPEES 19, 40-48
SEITE 3
The TrophinOak platform: 13C-labeling chamber
Experiment Piloderma und Phytophthora
mobile labeling chamber
Incubation and labeling with 13CO2
Angay et al. (2014) New Phytol. 203:1282-1290
SEITE 4
Herrmann et al. 2016, PPEES 19, 40-48
The TrophinOak platform: Oak Contig library DF159.1
8 Q. robur DF159
cDNA pools
16 normalized Q. robur
DF159
cDNA pools
Oaks genome resources
Illumina sequencing
110,276,398
trimmed PE reads
454 pyrosequencing (UFZ)
278,777 trimmed sequences
MIRA
454OakContigDF159
assembly
Conversion
to pseudoIllumina
reads
•
Merging with INRA Bordeaux
RNA Seq library
Lesur I et al. (2015) BMC Genomics
•
Oak genome sequencing by
INRA Bordeaux/Genoscope
(France)
•
DF159 genome re-sequencing
by Genoscope
Trinity
OakContigDF159.1
hybrid assembly
65,712 contigs
1,003 bp mean length
Tarkka et al. (2013) New Phytol. 199: 529-540
SEITE 5
Interplay between rhythmic growth & biotic interactions
C & N Allocations, RNA Seq
Stage A
EM / Interactor
X
6 different partners
Shoot growth cessation
Stage B
EM Piloderma croceum
Root flush
RF
Swelling bud
Stage C
Shoot elongation
Stage D
Shoot flush
SF
Herrmann et al. 2016, PPEES 19, 40-48
Page 6
Leaf expansion
Interplays between rhythmic growth, resource shifts
and mycorrhizal effects
Control
P. croceum
Endogenous rhythmic growth
impacts on C & N allocations during
SF (A-B) to RF (C-D) transitions
13C
Excess and 15N Excess
enhanced by P. croceum, but
no impact on rhyhmic growth
Rhythmic growth not resource driven
Sink Leaf
Source Leaf-1
Source Leaf-2
Stem
Principal Roots
Lateral Roots
(■)
(■)
(■)
(■)
(■)
(■)
Herrmann et al. (2015) J Exp Bot 66, 7113-7127
Biotic interactions stimulated by resource shifts during
ERG
RF Pilo
RF
SF
SF Pilo
Phytophthora q.
vs. control
X
Control oaks
vs. EM oaks.
RF Pilo
Root infection measured by DNA qPCR
7 D after inoculation
RF
Angay et al. (2014) New Phytol. 203:1282-1290
SF
Similar patterns with nematodes and mildew
SF Pilo
•
•
Caravaca et al. (2015) Soil Biol. Biochem. 82, 65-73
Mailander et al. unpublished
SEITE 8
Interplays between growth flushing and biotic
interactions differential gene expression
Streptomyces sp. AcH 505
(mycorrhization helper bacteria)
Poster S3.5 by
Tarkka et al.
AcH 505
AcH 505 + P. croceum
Piloderma croceum
(ectomycorrhiza)
SEITE 9
Kurth et al. (2015) BMC Genomics 16 ( art. 658)
Interplay rhythmic growth, mycorrhizal interaction
Stage D
Stage A
Stage B
Transition to bud rest
Stage C
Transition to root rest
Number of DE contigs in leaves Number of DE contigs in roots
Total
Up
Down
Total
Up
Down
Cont_Leaf
Cont_LR
Control
Plants (Co)
Piloderma
croceum (Pi)
DtoA
3138
1196
1956
35
13
22
AtoB
73
3
70
5
1
4
BtoC
11
8
3
4353
1751
2602
CtoD
2
1
529
1144
860
37
415
Pi_LR
7
114
DtoA
1
Pi_Leaf
284
AtoB
741
495
246
15
7
8
BtoC
365
323
42
37
30
7
CtoD
14
6
8
7
4
3
30
Herrmann et al. J. Exp Bot (2015) 66, 7113-7127
SEITE 10
Core genes regulated during rhythmic growth
Up-regulated contigs
Differential expression of
photoperiod and circadian clock
related genes
Down-regulated contigs
Herrmann et al. J. Exp Bot (2015)
SEITE 11
Interplay rhythmic growth # biotic interactions, looking
for gene regulation patterns
Transcriptome change compared
to non-inoculated control plants
Herrmann et al. 2016, PPEES 19, 40-48
SEITE 12
Summary
1. Endogenous rhythmic growth impacts on biotic interactions
a.
Shifts in below- aboveground resource allocations
b.
Resource shifts impact on virulence of the interactors
c.
Rhythmic growth not driven by resources but by internal clock processes
2. Endogenous rhythmic growth interplays with biotic
interactions at gene regulation level
a.
Each biotic partner interplays in both shoot and roots at a specific
development phase (RS vs. SF)
b.
No relation to targeted plant part or interaction type (beneficial vs.
detrimental)
c.
ERG a tool to tackle key (core) genes for both development and interactions
SEITE 13
The TrophinOak-PhytOmeter platform
DF159 enjoying freedom
www.TrophinOak.de
Thank you for your attention!
SEITE 14