Become a SQL Server Performance Detective

Download Report

Transcript Become a SQL Server Performance Detective

Danette Dineen Riviello
Magellan Health
June 6, 2015
1
 To learn ways to collect and
interpret the data available in SQL
Server 2008 and above to determine
the culprit in chronic or emergent
performance issues.
2




What triggers an Investigation?
Emergent Performance Issues
Chronic Performance Problems
Solving the Case
3
Increase in User Complaints
Application Timeouts
Long-running queries
 Open Transactions
 Chain of blocking



4

Look at all running processes
sp_who2 active

Look for one login or one database:
SELECT spid, [status],
loginame [Login],hostname,
blocked BlkBy,
Db_name(dbid) DBName,
cmd Command,
cpu CPUTime,
physical_io DiskIO,
last_batch LastBatch,
[program_name] ProgramName
FROM master.dbo.sysprocesses
where [status] not in ('sleeping')
and loginame like '%login%‘
And Db_name(dbid) = ‘DBName’
ORDER BY dbname
5

Look for the lead of a blocking chain
SELECT spid,sp.STATUS
,loginame
= SUBSTRING(loginame, 1, 12)
,hostname
= SUBSTRING(hostname, 1, 12)
,blk
= CONVERT(CHAR(3), blocked)
,open_tran ,dbname
= SUBSTRING(DB_NAME(sp.dbid),1,10)
,cmd,waittype,program_name
,waittime ,last_batch
,SQLStatement
=
SUBSTRING
(
qt.text,
er.statement_start_offset/2,
(CASE WHEN er.statement_end_offset = -1
THEN LEN(CONVERT(nvarchar(MAX), qt.text)) * 2
ELSE er.statement_end_offset
END - er.statement_start_offset)/2
)
FROM master.dbo.sysprocesses sp
LEFT JOIN sys.dm_exec_requests er
ON er.session_id = sp.spid
OUTER APPLY sys.dm_exec_sql_text(er.sql_handle) AS qt
WHERE spid IN (SELECT blocked FROM master.dbo.sysprocesses)
AND blocked = 0
6

Look at object locks
SELECT resource_type,
db_name(resource_database_id) "DatabaseName",
object_name(resource_associated_entity_id)
"ObjectName",
request_status,
request_mode,request_session_id,
resource_description
FROM sys.dm_tran_locks sl
JOIN sys.objects so
ON SO.object_id =
sl.resource_associated_entity_id
WHERE resource_type = 'OBJECT'
7

Results
resource_type
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
OBJECT
DatabaseName
AdventureWorks2012
AdventureWorks2012
AdventureWorks2012
AdventureWorks2012
AdventureWorks2012
AdventureWorks2012
AdventureWorks2012
AdventureWorks2012
AdventureWorks2012
AdventureWorks2012
AdventureWorks2012
AdventureWorks2012
AdventureWorks2012
AdventureWorks2012
AdventureWorks2012
AdventureWorks2012
AdventureWorks2012
AdventureWorks2012
master
ObjectName
sysrowsets
sysallocunits
sysrscols
sysseobjvalues
sysprivs
sysschobjs
sysschobjs
syscolpars
sysiscols
sysidxstats
sysidxstats
sysxprops
sysobjvalues
sysaudacts
sysmultiobjrefs
syssingleobjrefs
sysobjkeycrypts
syssoftobjrefs
spt_values
request_status
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
GRANT
request_mode request_session_id
IX
53
IX
53
IX
53
IX
53
IX
53
Sch-S
55
IX
53
IX
53
IX
53
Sch-S
55
IX
53
IX
53
IX
53
IX
53
IX
53
IX
53
IX
53
IX
53
IS
53
8
Sch-S
Sch-M
S
U
X
IU
IX
IS
SIU
SIX
UIX
BU
Schema stability.
Schema modification.
Shared.
Update.
Exclusive.
Intent Update.
Intent Exclusive.
Intent Shared.
Shared Intent Update.
Shared Intent Exclusive.
Update Intent Exclusive.
Bulk Update.
9

Look for open transactions
SELECT spid, [status],
loginame [Login],hostname,
blocked BlkBy,
Db_name(dbid) DBName,
cmd Command,
cpu CPUTime,``
physical_io DiskIO,
last_batch LastBatch,
[program_name] ProgramName
FROM master.dbo.sysprocesses
WHERE open_tran>0
ORDER BY spid
10

DBCC OPENTRAN
Oldest active transaction:
SPID (server process ID): 770
UID (user ID) : -1
Name
: user_transaction
LSN
: (1035423:31630:1)
Start time
: May 22 2015 11:55:01:713AM
SID
: 0x7edf25dd64e37049b598df28cd124355
Replicated Transaction Information:
Oldest distributed LSN
: (1035392:5570:1)
Oldest non-distributed LSN : (1035323:31630:1)
DBCC execution completed. If DBCC printed error messages,
contact your system administrator.
11

When a stored procedure is performing poorly, run the following query to figure out
what line of code it is running:
SELECT [Spid] = session_Id
, ecid
, [Database] = DB_NAME(sp.dbid)
, [User] = nt_username
, [Status] = er.status
, [Wait] = wait_type
, [Individual Query] = SUBSTRING (qt.text,
er.statement_start_offset/2,
(CASE WHEN er.statement_end_offset = -1
THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
ELSE er.statement_end_offset END er.statement_start_offset)/2)
,[Parent Query] = qt.text
, Program = program_name
, Hostname
, nt_domain
, start_time
FROM sys.dm_exec_requests er
INNER JOIN sys.sysprocesses sp ON er.session_id = sp.spid
CROSS APPLY sys.dm_exec_sql_text(er.sql_handle) as qt
WHERE session_Id = @SPID
-- where @SPID is the one in Question
ORDER BY 1, 2
12


What has changed?
Look at default system trace:
13

Look for recent changes

Look at the Log directory for prior files
14

To find most expensive stored procedures:
SELECT TOP 100 d.object_id, d.database_id,
OBJECT_NAME(object_id, database_id) 'proc name',
d.cached_time, d.last_execution_time,
d.total_elapsed_time,
d.total_elapsed_time/d.execution_count AS
[avg_elapsed_time],
d.last_elapsed_time, d.execution_count
FROM sys.dm_exec_procedure_stats AS d
ORDER BY [total_worker_time] DESC;
15

Most expensive Stored procedure runs
16
Number of
times executed
during time
period
Time
procedure
plan was
cached
Number of Days
from cache time
and most recent
execution is about
15 – 16 days
Avg elapsed
time multiplied
by number of
executions
17





Less impact than an interactive trace
Can load trace data on an alternate server
Can load trace data at a different time of day
Capture specific parameters passed
Compare same time of day on different days
18
19
20

Load the trace file to another server
select * into dbo.tmp_loadtraceFile_ServerA_20150201_8
FROM ::fn_trace_gettable(‘d:\trace_20150201_8.trc', 1)

Query trace file to find commands that are
calling the suspected stored procedure
select top 25 textdata, loginname, spid, duration,
starttime, endtime, reads, cpu
From dbo.tmp_loadtraceFile_ServerA_20150201_8
Where textdata like ‘%offendingproc%’
Order by duration desc
21
22

Query to get query plans from DMV:
23





Look at the query plan
Missing index or wrong index chosen?
Look at the parameters sent in
Check for other runs that perform better
Could it be a parameter sniffing issue?
24
Query plan developed based on the first values
passed to the procedure
 Pros:
 Saves time: only one compile needed
 Cons:
 Wrong query plan chose

25



Look at Query plans
If one procedure performs well in one case
and not others
Do the index choices make sense?
26
27





Do Nothing
Force Recompile each run (expensive!)
Query Hints (OPTIMIZE FOR)
Break down stored procedures to handle
specific cases
Education users on best parameter choices
28

Check for table scans caused by:
 Missing index
 Broad “where” clause



Check for improper join (many-to-many)
Check for too many tables in one join
Use of a function in a large query result set
29
SELECT
migs.avg_total_user_cost * (migs.avg_user_impact / 100.0) * (migs.user_seeks +
migs.user_scans) AS improvement_measure,
'CREATE INDEX [missing_index_' + CONVERT (varchar, mig.index_group_handle) + '_' +
CONVERT (varchar, mid.index_handle)
+ '_' + LEFT (PARSENAME(mid.statement, 1), 32) + ']'
+ ' ON ' + mid.statement
+ ' (' + ISNULL (mid.equality_columns,'')
+ CASE WHEN mid.equality_columns IS NOT NULL AND mid.inequality_columns IS NOT
NULL THEN ',' ELSE '' END
+ ISNULL (mid.inequality_columns, '')
+ ')'
+ ISNULL (' INCLUDE (' + mid.included_columns + ')', '') AS create_index_statement,
migs.*, mid.database_id, mid.[object_id]
FROM sys.dm_db_missing_index_groups mig
INNER JOIN sys.dm_db_missing_index_group_stats migs ON migs.group_handle =
mig.index_group_handle
INNER JOIN sys.dm_db_missing_index_details mid ON mig.index_handle = mid.index_handle
WHERE migs.avg_total_user_cost * (migs.avg_user_impact / 100.0) * (migs.user_seeks +
migs.user_scans) > 10
ORDER BY migs.avg_total_user_cost * migs.avg_user_impact * (migs.user_seeks +
migs.user_scans) DESC
30

Solution may change over time
 Tables grow
 Statistics out of date
 Parameter Sniffing


Some problems result from multiple issues
Do least disruptive changes first:
 Add an index
 Close open connections
31

Thank you for attending!

Further questions:
[email protected]
32