Transcript Document

Symmetries of the Early Universe
and the Origin of Matter:
M.J. Ramsey-Musolf
Caltech
Wisconsin-Madison
Qu i c k T i m e ™ a n d a
T I F F (Un c o m p re s s e d ) d e c o m p re s s o r
a re n e e d e d to s e e th i s p i c t u re .
Fundamental Symmetries & Cosmic History
• What were the fundamental symmetries
that governed the microphysics of the
early universe?
The (broken) symmetries of the Standard Model of particle
physics work remarkably well at late times, but they leave
many unsolved puzzles pertaining to the early universe
• Can new symmetries at the weak scale
account for the origin of matter and how
can we find out?
A combination of precise low-energy measurements, high energy
collider experiments, dark matter searches, and theoretical
advances will help us determine if new symmetries at the
electroweak scale can account for the abundance of matter
Outline
I.
Motivation: Why New Symmetries ?
Why Low Energy Probes ?
II. Brief Interlude: Supersymmetry
III. Symmetries and the Origin of Matter
• General Considerations
• Theoretical challenges and developments
• Phenomenology in the LHC era and beyond
I.
Motivation
Why New Symmetries ?
Why Low Energy Probes ?
Fundamental Symmetries & Cosmic History
Electroweak symmetry
breaking: Higgs ?
Beyond the SM
SM symmetry (broken)
Fundamental Symmetries & Cosmic History
It utilizes a simple and elegant
symmetry principle
SU(3)c x SU(2)L x U(1)Y
to explain the microphysics of
the present universe
• Big Bang Nucleosynthesis
(BBN) & light element
abundances
• Weak interactions in stars
& solar burning
•Standard
Supernovae
& neutron
Model
puzzles
stars
Standard Model successes
Fundamental Symmetries & Cosmic History
Electroweak symmetry
breaking: Higgs ?
• Non-zero vacuum
expectation value of
neutral Higgs breaks
electroweak sym and
gives mass:
• Where is the Higgs
particle?
Puzzles the St’d Model may or
may not solve:
SU(3)c x SU(2)L x U(1)Y
U(1)EM
How is electroweak symmetry broken?
How do elementary
particles
getsuccesses
mass ?
• Is Standard
there more Model
than
puzzles
Standard
Model
one?
Fundamental Symmetries & Cosmic History
Electroweak
symmetry
Puzzles the Standard
Model
can’t solve
breaking: Higgs ?
1.
2.
3.
4.
Origin of matter
Unification & gravity
Weak scale stability
Neutrinos
Beyond the SM
What are the symmetries
(forces) of the early
universe beyond those of
the SM?
SM symmetry (broken)
Fundamental Symmetries & Cosmic History
Electroweak symmetry
breaking: Higgs ?
Baryogenesis: When?
CPV? SUSY? Neutrinos?
WIMPy D.M.: Related
to baryogenesis?
“New gravity”? Lorentz
violation? Grav baryogen ?
• C: Charge Conjugation
?
• P: Parity
Beyond the SM
SM symmetry (broken)
Cosmic Energy Budget
Fundamental Symmetries & Cosmic History
Early universe
Present
universe
Unification?
Use gauge coupling energydependence look back in time
Standard Model
4
2
gi


Weak scale

e  e()


g  g()

High energy desert
log10 ( / 0 Energy
)
Scale ~ T
Planck scale
Fundamental Symmetries & Cosmic History
Early universe
Present universe
Standard Model
4  for
A “near miss”
2
grand unification
g
Gravity
i
Is there unification?
What new forces are
responsible ?
Weak scale
High energy desert
log10 ( / 0 )
Planck scale
Fundamental Symmetries & Cosmic History
Early universe
2
GF ~ 1 Muniverse
Present
WEAK
Weak Int Rates:
Solar burning
Element abundances
Standard Model
4
Weak scale
2
gi
unstable:
Why is GF
so large?
Weak scale
Unification
Neutrino
mass Origin of
matter
High energy desert
log10 ( / 0 )
Planck scale
There must have been additional
symmetries in the earlier Universe to
• Unify all matter, space, & time
• Stabilize the weak scale
• Produce all the matter that exists
• Account for neutrino properties
• Give self-consistent quantum gravity
Supersymmetry, GUT’s, extra dimensions…
What are the new fundamental
symmetries?
Two frontiers in the search
Collider experiments
Indirect searches at
(pp, e+e-, etc) at higher
lower energies (E < MZ)
energies (E >> MZ)
but high precision
Large Hadron Collider
Ultra cold neutrons
CERN
High energy
physics
LANSCE, NIST, SNS, ILL
Particle, nuclear
& atomic physics
Precision Probes of New Symmetries
Electroweak symmetry
New Symmetries
breaking: Higgs ?
1.
2.
3.
4.
Origin of Matter
Unification & gravity
Weak scale stability 
Neutrinos

e
˜

W
˜0




˜




e

QuickT ime™ and a
T IFF (Uncompressed) decompressor
are needed to see this picture.
QuickTime™ and a
TIFF(Uncompressed) decompressor
are needed to see this picture.
Qu ickT ime ™ a nd a
TIF F (U nco mpre sse d) de com pres sor
are nee ded to s ee th is pi cture .
Quic kTime™ and a
TIFF (Uncompres sed) dec ompressor
ar e needed to see this picture.
Beyond the SM
Qui ckT ime™ and a
T IFF (Uncompressed) decompressor
are needed to see this picture.
SM symmetry (broken)
Comparing loop effects in different processes
can probe particle spectrum
Direct
Measurements
Radiative
corrections
Probing Fundamental
• Precision
measurements
Symmetries
beyond
predicted
a range
for mt
the SM:
before
top quark discovery
low• mUse
mb !
t >> precision
energy measurements
• mt is consistent with that
to probe virtual effects
range
of new symmetries &
• Itcompare
didn’t have
tocollider
be that
with
way
results
Stunning SM Success
J. Ellison, UCI

Precision, low energy measurements can
probe for new symmetries in the desert
Precision ~ Mass Scale
O
 M 
NEW  SM   
O
 M˜ 
NEW
2
M=m ~ 2 x 10-9

M=MW
exp ~
1 x 10-9
 ~ 10-3
Interpretability
• Precise, reliable SM predictions
• Comparison of a variety of observables
• Special cases: SM-forbidden or suppressed processes
II. Brief Interlude: Supersymmetry
SUSY: a candidate symmetry of the
early Universe
• Unify all forces
3 of 4
• Protect GF from shrinking
Yes
• Produce all the matter that exists
Maybe so
• Account for neutrino properties
Maybe
• Give self-consistent quantum gravity
Probably
necessary
SUSY: a candidate symmetry of the
early Universe
Supersymmetry
Fermions
Bosons
e L,R , q L,R
e˜ L,R , q˜ L,R
gauginos
˜ , Z˜ ,
˜, g
˜
W
W , Z , , g
Higgsinos
˜ ,H
˜
H
u
d
sfermions
H u, H d

0
˜
˜
˜
˜
˜
˜
W, Z ,, Hu, d   , 

Charginos,
neutralinos
SUSY and R Parity
If nature conserves
PR
PR  1
3(BL)
1
2S
vertices have even
number of superpartners
Consequences
0
˜
 Lightest SUSY particle  
is stable
viable dark matter candidate
 Proton is stable
 Superpartners appear only in loops
SUSY must be a broken symmetry
Superpartners have
not been seen
M e˜  me
M q˜  mq
M ˜  MW ,Z ,
How is SUSY broken?
Theoretical models
of SUSY breaking
SUSY Breaking
Visible
World
Hidden
World
Flavor-blind mediation
III. Symmetries & the Origin of Matter
• Baryogenesis: General Considerations
• Theoretical challenges and developments
• Phenomenology in the LHC era and beyond
What is the origin of baryonic matter ?
Cosmic Energy Budget
E B
Dark Matter
d  dS
 

Baryons
B (7.3 2.5) 1011
YB  
s (9.2 1.1) 1011
dddS(S
S (E
EE
) E
)
EDM


EDM
EDM
EDM 
hhh
BBN
WMAP
Dark Energy



T-odd , CP-odd
by CPT theorem
What are the
Searches
for permanent
quantitativeelectric
implications
dipoleof new
moments
EDM
experiments
(EDMs) of
forthe
explaining
neutron,the
electron,
origin of
andbaryonic
the
neutral atoms
component
probe of
new
theCP-violation
Universe ?
Ingredients for Baryogenesis
Sakharov Criteria
Anomalous B-violating processes
• B violation
• C & CP violation
• Nonequilibrium
dynamics
Sakharov, 1967
Prevent washout by inverse processes
Ingredients for Baryogenesis
Present universe
Early universe
Sakharov Criteria
• B violation
• C & CP violation
 Y1

• Nonequilibrium
dynamics
Sakharov, 1967
 1
L


Weak scale
baryogenesis can be
tested experimentally
 1
S
?
?
log10 ( / 0 )
Weak scale
Planck scale
EW Baryogenesis: Standard Model
Weak Scale Baryogenesis
Anomalous Processes
• B violation
• C & CP violation
JB
• Nonequilibrium
dynamics
A
qL

Sakharov, 1967
W

W
Different vacua: (B+L)= NCS
Kuzmin, Rubakov, Shaposhnikov
McLerran,…



Sphaleron Transitions
EW Baryogenesis: Standard Model
Shaposhnikov
Quark mixing & CPV
2
J  s12 s13 s23 c12 c13
c 23 sin13
 (2.88 0.33) 105
Weak Scale Baryogenesis
mt4 mb4 mc2 ms2
13

3
10
MW4 MW4 MW2 MW2
• B violation
• C & CP violation
• Nonequilibrium
dynamics


Sakharov, 1967
F
F
1st order

2nd order


• CP-violation too weak
• EW PT too weak
Increasing mh



Baryogenesis: New Electroweak Physics
90’s:
Weak Scale Baryogenesis
• B violation
Cohen, Kaplan, Nelson
Joyce, Prokopec, Turok
Unbroken phase
Topological transitions
new
• C & CP violation
• Nonequilibrium
dynamics
(x)
Broken phase

1st order phase 
transition
CP Violation
Sakharov, 1967
new
• Is it viable?
• Can experiment constrain it?
• How reliably can we compute it?

new


new
e


EDM Probes of New CP Violation
CKM
f
e
n
199
Hg

dSM
dexp
dfuture
 1040
 1030
 1.6 1027
 3.0 1026
 1031
 1029
 1033
 1028
 2.11028
 1.11018
 1032
 1024
Also 225Ra, 129Xe, d
If new EWK CP violation is responsible for abundance
of matter, will these experiments see an EDM?
Present n-EDM limit
Proposed n-EDM limit
?
Matter-Antimatter
Asymmetry in
the Universe
Better theory
M. Pendlebury
B. Filippone
Riotto; Carena et al.;
Lee, Cirigliano, R-M, Tulin
“n-EDM has killed more theories than any other single experiment”
Baryogenesis: New Electroweak Physics
90’s:
Weak Scale Baryogenesis
• B violation
Cohen, Kaplan, Nelson
Joyce, Prokopec, Turok
Unbroken phase
Topological transitions
• C & CP violation
• Nonequilibrium
dynamics
Broken phase
1st order phase 
transition
(x)
new
More Higgs?
CP Violation
Ando,Barger,

Langacker,
O.Connell,Profumo,
R-M, Shaugnessy,
Tulin, Wise
new
Sakharov, 1967
Theoretical
Issues:
Strength of phase transition (Higgs
new
sector) •Bubble
dynamics (expansion rate)
Is it viable?
Transport
at phase
boundary
(non-eq
• Can
experiment
constrain
it? QFT)
 
EDMs: many-body
physics
& QCD
• How reliably
can we
compute it?
e


new

Electroweak Phase Transition & Higgs
F
F
1st order

2nd order

Need


Increasing mh

Stop loops
in VEff
LEP EWWG

t˜



EMSSM ~ 10
 ESM ! mH< 120 GeV


So that Gsphaleron is not too fast
mh>114.4 GeV
ComputedorESM
! mGeV
~ 90
H < 40 GeV
(SUSY)
S


Electroweak Phase Transition & Higgs
e

e


Z0


F
sin2q
Z0


F
1st order

2nd order

LEP EWWG
Need


Increasing mH


Singlet Higgs (SUSY or non-SUSY)
S


S
S

Decay



So that Gsphaleron is not too fast
mh>114.4 GeV
Mixing

ComputedorESM
! mGeV
~ 90
H < 40 GeV
(SUSY)
Reduced SM Higgs branching ratios
Electroweak Phase Transition & Higgs
B.R.
reduction
F
F
1st order
2nd order
LEP EWWG
mH
Unusual final states


S


b

S


Need
b

Increasing
m
 H






O’Connell,
 R-M, Wise

Singlet Higgs (SUSY
or non-SUSY)
S


S
S

Decay


So that Gsphaleron is not too fast
mh>114.4 GeV
Mixing

How iselectroweak symmetry
broken? (LHC, ILC)
ComputedorESM
! mGeV
~ 90
H < 40 GeV
(SUSY)
Baryogenesis: New Electroweak Physics
90’s:
Weak Scale Baryogenesis
• B violation
Cohen, Kaplan, Nelson
Joyce, Prokopec, Turok
Unbroken phase
Topological transitions
• C & CP violation
• Nonequilibrium
dynamics
(x)
new
Broken phase
1st order phase 
transition

CP Violation
Sakharov, 1967
Theoretical
Issues:
new
Strength of phase transition (Higgs
“Gentle” departure
from
equilibrium&

sector) •Bubble
dynamics (expansion rate)
Is it viable?
new
scale hierarchy
Transport
at
phase
boundary
(non-eq
QFT)
• Can experiment constrain it?
Lee,
Cirigliano,
new

R-M,Tulin
EDMs: many-body
physics
& QCD

• How reliably
can we
compute it?
e


Quantum Transport & Baryogenesis
Non-equilibrium quantum transport
RHIC
Violent departure
from equilibrium
Electroweak Baryogenesis
new
(x)
“Gentle” departure from
equilibrium & scale hierarchy
Systematic treatment of transport
with controlled approximations
using non-equilibrium QFT
Cirigliano, Lee, R-M, Tulin
Bubble Wall Dynamics
VFree
(2V
(1 pressure
energy
Dine et al,Reflection
St’d Model pressure
p > pminParticles
: transmitted
vwParticles
with M(2
increasing mH
with M(1
p < pmin : reflected
SUSY or other models ?
mt
Higgs pressure
Boost pressure
Fewer particles with p > pmin
in wall rest frame; more
reflection
Quantum Transport & Baryogenesis
Electroweak Baryogenesis
new


(x)
1.
Evolution is non-adiabatic:
vwall > 0 !decoherence
2.
Spectrum is degenerate:
T > 0 ! Quasiparticles mix
Density is non-zero
3.
Particle
Propagation: Beyond familiar (Peskin) QFT
0
LI
IN
Assumptions:
1.
2.
3.
Evolution is adiabatic

Spectrum is non-degenerate
Density is zero
0 OUT
Quantum Transport & Baryogenesis
Electroweak Baryogenesis
new
(x)
1.
Competing
Evolution
Dynamics
is non-adiabatic:
vwall > 0 !decoherence
CPV
2. Spectrum is degenerate:
T > 0 ! Quasiparticles mix
Det
bal
3. Density
is non-zero
Cirigliano, Lee,Tulin, R-M


Scale Hierarchy:
Fast, but not too fast
Systematically derive
transport eq’s from Lnew
ed = vw (k / w<< 1
Hot, but not too hot
ep = Gp / w<< 1
Dense, but not too dense
e = / T << 1
Work to lowest, nontrivial order in e’s
Error is O (e) ~ 0.1
Cirigliano, Lee, R-M
SUSY CPV & Quantum Transport
Chargino Mass Matrix
CPV
MC =
T ~TEWT: ~
scattering
TEW
~) ~
of(xH,W
from
new
background field
mW 2 cosb
M2
mW 2 sin b



Neutralino Mass Matrix
T << TEW : mixing
~ ~
~0
of H,W to ~,
Resonant CPV:
M1,2 ~ 
˜ u,d
q , W˜ , B˜ , H
 
˜





M
0
˜
W


0
-m
cos
b
sin
q
m
cos
b
cos
q
M
 ˜ ˆ


1
1
˜
˜
˜
W
H
M



MN = d  0C H˜   M 1 2msin b0sin q M-m sinbsin˜ q
 0
um cos bcos q
2 - 2
-m cos bsin q
Z
1
Z
2
Z
W
mZ sin bsin qW
Z

W
W
Z
W
Z
W
W
-mZ sin bsin qW
-
0
Baryogenesis: New Electroweak Physics
90’s:
Weak Scale Baryogenesis
• B violation
Cohen, Kaplan, Nelson
Joyce, Prokopec, Turok
Unbroken phase
Topological transitions
• C & CP violation
• Nonequilibrium
dynamics
Sakharov, 1967
(x)
new
Broken phase
1st order phase 
transition

CP Violation
Elementary particle
EDMs: N!1
Theoretical Issues:
new
Strength of phase transition (Higgs
Many-body EDMs:
Engel,Flambaum,
sector) •Bubble
dynamics (expansion rate)

Is it viable?
new
Haxton, Henley,
Transport
at phase
boundary
(non-eq
• Can
experiment
constrain
it? QFT)
new R-M
Khriplovich,Liu,
 
EDMs: many-body
physics
& QCD
• How reliably
can we
compute it?
e


EDMs in SUSY
One-loop
f˜
˜0




q˜

˜0

f˜

f
EDM:
 

q, l, n…
g
q˜


q

Chromo-EDM:
q, n…



Dominant in

nuclei & atoms
EDMs & Baryogenesis
f˜
q˜
˜

0


˜

0
g
q˜

q
 



(x)
new

f˜


f
˜,B
˜ ,H
˜ u,d
q,W



Future
de dn dA
Cirigliano, Lee,
Tulin, R-M
Resonant
Non-resonant
T ~ TEW
EDMs in SUSY
Decouple in large
One-loop
f˜
˜0




q˜

˜0

f˜

f
EDM:
 
limit

q, l, n…
g
q˜
q

Chromo-EDM:
q, n…


Dominant in

nuclei & atoms

Two-loop
g

EDM only: no chromo-EDM


g

g
Weinberg: small matrix el’s

EDMs & Baryogenesis
| sin  | > 0.02
Baryogenesis
| de , dn | > 10-28 e-cm
M < 1 TeV
LEP II Exclusion
Future
de, dn
Two loop de
Cirigliano,
Profumo, R-M
SUGRA: M2 ~ 2M1
AMSB: M1 ~ 3M2
SUSY Baryogenesis & Colliders
LHC reach
ILC reach
Present de
Prospective de
SUSY CPV & Dark Matter
Chargino
Mass Matrix
T << T
T ~TEW : scattering
~ ~
of H,W from
EW
CPV
0
N11B 0N
Hbd0N14Hu0
cos
M2 12W mN213
MC =
BINO
background field
W
mW 2 sin b
WINO

HIGGSINO
Neutralino
What role Mass
can the
Matrix
precursors of the
0
neutralinos M1
M2
play in0
MN = -m
mZ cos bcos qW
Z cos bsin qW
baryogenesis?
mZ sin bsin qW
T << TEW : mixing
~ ~
~0
of H,W to ~,
-mZ sin bsin qW
-mZ cos bsin qW
mZ cos bcos qW
mZ sin bsin qW
-mZ sin bsin qW
0
-
-
0
SUSY Baryogenesis & Dark Matter
Neutralino-driven
baryogenesis
Baryogenesis
Charginos &
neutralinos
LEP II Exclusion
Two loop de
Cirigliano,
Profumo, R-M
SUGRA: M2 ~ 2M1
AMSB: M1 ~ 3M2
Dark Matter: Relic Abundance
˜10

t˜

Neutralino-driven
baryogenesis
t
suppressed
˜10

t




~10
LEP II Exclusion
W,Z
~i0 , ~ j
~ 0
1
too fast
Non-thermal 0
W,Z
SUGRA: M2 ~ 2M1
AMSB: M1 ~ 3M2

SUSY Dark Matter: Solar Neutrinos
˜0

Z0
˜0





Neutralino-driven
 baryogenesis

SUGRA: M2 ~ 2M1
Gravitational capture in sun followed by
annihilation into high energy neutrinos
No signal in
SuperK detector
AMSB: M1 ~ 3M2
Cirigliano, Profumo, R-M
SUSY Dark Matter: Future Experiments
Neutralino-driven
baryogenesis & nonstandard cosmology
Assuming
W ~WCDM
LHC era complementarity:
• EDMs will remain most powerful
probe of electroweak baryogenesis
• DM searches will probe 0 driven
baryogenesis & non-st’d cosmology
• LHC will tell us about Higgs &
phase transition
Cirigliano,
Profumo, R-M
Conclusions
• The fundamental symmetries of the Standard Model
provide a successful basis for explaining the
microphysics of the present universe, but additional
symmetries are needed to address important questions
about
earlier
times unification, size of the Fermi
Origin
of matter,
constant, neutrino mass, gravity,…
• New symmetries at the weak scale may be able to
account for the origin of matter
A combination of precise low-energy experiments
(EDM searches), collider studies, dark matter searches
and theoretical advances will help us find out
• This field provides a rich interplay of particle, nuclear, &
atomic physics with cosmology in both theory & exp’t
Conclusions
We’re making
progress…
…and open to
new ideas.