Advanced Precalculus Notes 8.3 The Complex Plane: De
Download
Report
Transcript Advanced Precalculus Notes 8.3 The Complex Plane: De
Advanced Precalculus Notes 8.3 The
Complex Plane: De Moivre’s Theorem
Absolute value of a number: distance from zero
(origin)
Complex number: z = a + bi
Conjugate: z = a - bi
Magnitude or modulus:
| z | x y z z
2
2
Argument:
b
tan
a
1
Polar Form of a Complex number:
z x yi (r cos ) (r sin )i r (cos i sin ) rcis
Plot the point corresponding to z 3 i
in the complex plane and write it in polar form:
Plot the point corresponding to z 2(cos30 i sin 30)
in the complex plane and write it in rectangular form:
Product of complex numbers:
z1 z2 r1r2 [cos(1 2 ) i sin(1 2 )]
Quotient of complex numbers:
z1 r1
[cos(1 2 ) i sin(1 2 )]
z2 r2
Given: z 3(cos20 i sin 20) and w 5(cos100 i sin 100)
find: a) zw
b)
z
w
DeMoivre’s Theorem:
z n r n [cos(n ) i sin(n )]
Write
[2(cos20 i sin 20)]3
in standard form a + bi
Write (1 i)
in standard form a + bi
5
Complex Roots:
0 2k
0 2k
zk r cos
i sin
n
n
n
n
n
Find the complex cube roots of:
in polar form and standard form
1 3i
Assignment:
page 606:
1 – 11, 16, 19, 23, 27, 33,
41, 43, 53, 57