Transcript Section P.5
The Complex Plane; De Moivre’s
Theorem
Polar Form
z x yi r (cos i sin )
r0
0 2
1. Plot each complex number in the
complex plane and write it in polar
form. Express the argument in
degrees
(Similar to p.334 #11-22)
1 i
2. Plot each complex number in the
complex plane and write it in polar
form. Express the argument in
degrees
(Similar to p.334 #11-22)
5 3 5i
3. Plot each complex number in the
complex plane and write it in polar
form. Express the argument in
degrees
(Similar to p.334 #11-22)
7 i
4. Write each complex number in
rectangular form
(Similar to p.334 #23-32)
5(cos i sin )
5. Write each complex number in
rectangular form
(Similar to p.334 #23-32)
4 cos i sin
6
6
6. Write each complex number in
rectangular form
(Similar to p.334 #23-32)
7 cos22 i sin 22
Multiplication and Division
z1 r1 (cos1 i sin 1 )
z 2 r2 (cos 2 i sin 2 )
then
z1 z 2 r1r2 cos1 2 i sin 1 2
z1 r1
cos1 2 i sin 1 2
z 2 r2
7. Find zw and z/w. Leave your
answers in polar form
(Similar to p.334 #33-40)
z cos 200 i sin 200
w cos120 i sin 120
8. Find zw and z/w. Leave your
answers in polar form
(Similar to p.334 #33-40)
z 8 cos i sin
4
4
3
3
w 4 cos i sin
8
8
9. Find zw and z/w. Leave your
answers in polar form
(Similar to p.334 #33-40)
z 3 3i
w 3 i
De Moivre's T heorem
z r (cos i sin )
then
z r cos(n ) i sin(n )
(n 1)
n
n
10. Write each expression in the
standard form a + bi
(Similar to p.334 #41-52)
2cos105 i sin105
4
11. Write each expression in the
standard form a + bi
(Similar to p.334 #41-52)
3
3
2
cos
i
sin
20
20
10
Let w = r(cos θo + i sin θo be a complex number,
and let n > 2 be an integer. There are n distinct
complex nth roots given by:
0 2k
0 2k
zk r cos
i sin
n
n
n
n
where k 0,1,2,...,n 1
n
12. Find all the complex roots.
Leave your answers in polar form
with the argument in degrees
(Similar to p.335 #53-60)
T hecomplexfourthrootsof 4 4i
13. Solve the following equation.
Leave your answers in polar form
with the argument in degrees
(Similar to p.335 #53-60)
x 27
5