Transcript Document

Fundamental Symmetries of the
Early Universe:
The Standard Model & Beyond
M.J. Ramsey-Musolf
Caltech
Wisconsin-Madison
Qu i c k T i m e ™ a n d a
T I F F (Un c o m p re s s e d ) d e c o m p re s s o r
a re n e e d e d to s e e th i s p i c t u re .
Fundamental Symmetries & Cosmic History
• What were the fundamental symmetries
that governed the microphysics of
the early universe?
The (broken) symmetries of the Standard Model of particle
physics work remarkably well at late times, but they leave
many unsolved puzzles pertaining to the early universe
• What insights can low energy (E << MZ)
precision electroweak studies
provide?
New forces and their symmetries generally imply the existence
of new particles. Looking for their footprints in low energy
processes can yield important clues about their character
Outline
I.
Motivation: Why New Symmetries ?
Why Low Energy Probes ?
II. Brief Interlude: Supersymmetry
III. Three Probes, Three Questions:
Electric dipole moments & the origin
of Matter
Weak decays, lepton scattering &
new forces
Neutrino mass and interactions
I.
Motivation
Why New Symmetries ?
Why Low Energy Probes ?
Fundamental Symmetries & Cosmic History
Electroweak symmetry
breaking: Higgs ?
Beyond the SM
SM symmetry (broken)
Fundamental Symmetries & Cosmic History
It utilizes a simple and elegant
symmetry principle
SU(3)c x SU(2)L x U(1)Y
to explain the microphysics of
the present universe
• Big Bang Nucleosynthesis
(BBN) & light element
abundances
• Weak interactions in stars
& solar burning
•Standard
Supernovae
& neutron
Model
puzzles
stars
Standard Model successes
Fundamental Symmetries & Cosmic History
Electroweak symmetry
breaking: Higgs ?
• Non-zero vacuum
expectation value of
neutral Higgs breaks
electroweak sym and
gives mass:
• Where is the Higgs
particle?
Puzzles the St’d Model may or
may not solve:
SU(3)c x SU(2)L x U(1)Y
U(1)EM
How is electroweak symmetry broken?
How do elementary
particles
getsuccesses
mass ?
• Is Standard
there more Model
than
puzzles
Standard
Model
one?
Fundamental Symmetries & Cosmic History
Electroweak
symmetry
Puzzles the Standard
Model
can’t solve
breaking: Higgs ?
1.
2.
3.
4.
Origin of matter
Unification & gravity
Weak scale stability
Neutrinos
Beyond the SM
What are the symmetries
(forces) of the early
universe beyond those of
the SM?
SM symmetry (broken)
Fundamental Symmetries & Cosmic History
Electroweak symmetry
breaking: Higgs ?
Baryogenesis: When?
CPV? SUSY? Neutrinos?
WIMPy D.M.: Related
to baryogenesis?
“New gravity”? Lorentz
violation? Effects on CMB?
• C: Charge Conjugation
?
• P: Parity
Beyond the SM
SM symmetry (broken)
Cosmic Energy Budget
Fundamental Symmetries & Cosmic History
Early universe
Present
universe
Unification?
Use gauge coupling energydependence look back in time
Standard Model
4
2
gi


Weak scale

e  e()


g  g()

High energy desert
log10 ( / 0 Energy
)
Scale ~ T
Planck scale
Fundamental Symmetries & Cosmic History
Early universe
Present universe
Standard Model
4  for
A “near miss”
2
grand unification
g
Gravity
i
Is there unification?
What new forces are
responsible ?
Weak scale
High energy desert
log10 ( / 0 )
Planck scale
Fundamental Symmetries & Cosmic History
Early universe
2
GF ~ 1 Muniverse
Present
WEAK
Weak Int Rates:
Solar burning
Element abundances
Standard Model
4
Weak scale
2
gi
unstable:
Why is GF
so large?
Weak scale
Unification
Neutrino
mass Origin of
matter
High energy desert
log10 ( / 0 )
Planck scale
There must have been additional
symmetries in the earlier Universe to
• Unify all matter, space, & time
• Stabilize the weak scale
• Produce all the matter that exists
• Account for neutrino properties
• Give self-consistent quantum gravity
Supersymmetry, GUT’s, extra dimensions…
What are the new fundamental
symmetries?
Two frontiers in the search
Collider experiments
Indirect searches at
(pp, e+e-, etc) at higher
lower energies (E < MZ)
energies (E >> MZ)
but high precision
Large Hadron Collider
Ultra cold neutrons
CERN
High energy
physics
LANSCE, NIST, SNS, ILL
Particle, nuclear
& atomic physics

Precision, low energy measurements can
probe for new symmetries in the desert
Precision ~ Mass Scale
O
 M 
NEW  SM   
O
 M˜ 
NEW
2
M=m ~ 2 x 10-9

M=MW
exp ~
1 x 10-9
 ~ 10-3
Interpretability
• Precise, reliable SM predictions
• Comparison of a variety of observables
• Special cases: SM-forbidden or suppressed processes
II. Brief Interlude: Supersymmetry
SUSY: a candidate symmetry of the
early Universe
• Unify all forces
3 of 4
• Protect GF from shrinking
Yes
• Produce all the matter that exists
Maybe so
• Account for neutrino properties
Maybe
• Give self-consistent quantum gravity
Probably
necessary
SUSY: a candidate symmetry of the
early Universe
Supersymmetry
Fermions
Bosons
e L,R , q L,R
e˜ L,R , q˜ L,R
gauginos
˜ , Z˜ ,
˜, g
˜
W
W , Z , , g
Higgsinos
˜ ,H
˜
H
u
d
sfermions
H u, H d

0
˜
˜
˜
˜
˜
˜
W, Z ,, Hu, d   , 

Charginos,
neutralinos
SUSY and R Parity
If nature conserves
PR
PR  1
3(BL)
1
2S
vertices have even
number of superpartners
Consequences
0
˜
 Lightest SUSY particle  
is stable
viable dark matter candidate
 Proton is stable
 Superpartners appear only in loops
SUSY must be a broken symmetry
Superpartners have
not been seen
M e˜  me
M q˜  mq
M ˜  MW ,Z ,
Can we test models of
SUSY breaking mediation ?
Theoretical models
of SUSY breaking
SUSY Breaking
Visible
World
Hidden
World
Flavor-blind mediation
III. Three Probes, Three Questions:
•
Why is there more matter than antimatter
in the present universe?
Electric dipole moment searches
•
What are the unseen forces that
disappeared from view as the universe
cooled?
Precision electroweak: weak decays & lepton scatt
•
What are the masses of neutrinos and
how have they shaped the evolution of the
universe?
Neutrino oscillations, 0nbb-decay, q13 , …
Tribble report
What is the origin of baryonic matter ?
Cosmic Energy Budget
E
d  dS
Dark Matter


Baryons
B (7.3 2.5) 1011
YB  
s (9.2 1.1) 1011
ddS(S
 E)  E
nnEDM


EDM  
hh
BBN
WMAP
Dark Energy


T-odd , CP-odd
by CPT theorem
What are the
Searches
for permanent
quantitativeelectric
implications
dipoleof new
moments
EDM
experiments
(EDMs) of
forthe
explaining
neutron,the
electron,
origin of
andbaryonic
the
neutral atoms
component
probe of
new
theCP-violation
Universe ?
EDMs & Baryogenesis
Present universe
Early universe
Sakharov Criteria
• B violation
• C & CP violation
 Y1

• Nonequilibrium
dynamics
Sakharov, 1967
 1
L


Weak scale
baryogenesis can be
tested experimentally
 1
S
?
?
log10 ( / 0 )
Weak scale
Planck scale
EW Baryogenesis: Standard Model
Weak Scale Baryogenesis
Anomalous Processes
• B violation
• C & CP violation
JB
• Nonequilibrium
dynamics
A
qL

Sakharov, 1967
W

W
Different vacua: (B+L)= NCS
Kuzmin, Rubakov, Shaposhnikov
McLerran,…



Sphaleron Transitions
EW Baryogenesis: Standard Model
Shaposhnikov
Quark mixing & CPV
2
J  s12 s13 s23 c12 c13
c 23 sin13
 (2.88 0.33) 105
Weak Scale Baryogenesis
mt4 mb4 mc2 ms2
13

3
10
MW4 MW4 MW2 MW2
• B violation
• C & CP violation
• Nonequilibrium
dynamics


Sakharov, 1967
F
F
1st order

2nd order


• CP-violation too weak
• EW PT too weak
Increasing mh



Baryogenesis: New Electroweak Physics
90’s:
Weak Scale Baryogenesis
• B violation
Cohen, Kaplan, Nelson
Joyce, Prokopec, Turok
Unbroken phase
Topological transitions
new
• C & CP violation
• Nonequilibrium
dynamics
(x)
Broken phase

1st order phase 
transition
CP Violation
Sakharov, 1967
new
• Is it viable?
• Can experiment constrain it?
• How reliably can we compute it?

new


new
e


EDM Probes of New CP Violation
CKM
f
e
n
199
Hg

dSM
dexp
dfuture
 1040
 1030
 1.6 1027
 3.0 1026
 1031
 1029
 1033
 1028
 2.11028
 1.11018
 1032
 1024
Also 225Ra, 129Xe, d
If new EWK CP violation is responsible for abundance
of matter, will these experiments see an EDM?
Present n-EDM limit
Proposed n-EDM limit
?
Matter-Antimatter
Asymmetry in
the Universe
Better theory
M. Pendlebury
B. Filippone
Riotto; Carena et al.;
Lee, Cirigliano, R-M, Tulin
“n-EDM has killed more theories than any other single experiment”
Baryogenesis: New Electroweak Physics
90’s:
Weak Scale Baryogenesis
• B violation
Cohen, Kaplan, Nelson
Joyce, Prokopec, Turok
Unbroken phase
Topological transitions
• C & CP violation
• Nonequilibrium
dynamics
Broken phase
1st order phase 
transition
(x)
new
Violation
More CP
SUSY
Higgs?

Ando,Barger,
Langacker
,Profumo, R-M,
Shaugnessy, Tulin
Sakharov, 1967
Theoretical
Issues:
new
Strength of phase transition (Higgs
“Gentle” departure

sector) •Bubble
dynamics (numerical)
Is it viable?
new equilibrium&
from
Transport
at phase
boundary
(non-eq
• Can
experiment
constrain
it? QFT) scale hierarchy
new
Cirigliano,
Lee,
 
EDMs: many-body
physics
&
QCD
• How reliably can we compute it?
eR-M,Tulin


Electroweak Phase Transition & Higgs
F
F
1st order

2nd order
LEP EWWG


Increasing mh



1st order PT in MSSM:
mh < 120 GeV
mh>114.4 GeV
Constraint
on mh relaxed
in
How
is electroweak
symmetry
SUSY models with more
broken?
Higgs (LHC, ILC)
or ~ 90 GeV
(SUSY)
Quantum Transport & SUSY CPV
Non-equilibrium quantum transport
RHIC
Violent departure
from equilibrium
Electroweak Baryogenesis
new
(x)
“Gentle” departure from
equilibrium & scale hierarchy
Systematic treatment of transport
with controlled approximations
using non-equilibrium QFT
Cirigliano, Lee, R-M, Tulin
SUSY CPV & Quantum Transport
Chargino Mass Matrix
CPV
MC =
T ~TEWT: ~
scattering
TEW
~) ~
of(xH,W
from
new
background field
mW 2 cosb
M2
mW 2 sin b



Neutralino Mass Matrix
T << TEW : mixing
~ ~
~0
of H,W to ~,
Resonant CPV:
M1,2 ~ 
˜ u,d
q , W˜ , B˜ , H
 
˜





M
0
˜
W


0
-m
cos
b
sin
q
m
cos
b
cos
q
M
 ˜ ˆ


1
1
˜
˜
˜
W
H
M



MN = d  0C H˜   M 1 2msin b0sin q M-m sinbsin˜ q
 0
um cos bcos q
2 - 2
-m cos bsin q
Z
1
Z
2
Z
W
mZ sin bsin qW
Z

W
W
Z
W
Z
W
W
-mZ sin bsin qW
-
0
EDM constraints & SUSY CPV
| sin  | > 0.02
Baryogenesis
| de , dn | > 10-28 e-cm
M < 1 TeV
LEP II Exclusion
Two loop de
Cirigliano,
Profumo, R-M
SUGRA: M2 ~ 2M1
AMSB: M1 ~ 3M2
SUSY CPV & Dark Matter
Chargino
Mass Matrix
T << T
T ~TEW : scattering
~ ~
of H,W from
EW
CPV
0
N11B 0N
Hbd0N14Hu0
cos
M2 12W mN213
MC =
BINO
background field
W
mW 2 sin b
WINO

HIGGSINO
Neutralino
What role Mass
can the
Matrix
precursors of the
0
neutralinos M1
M2
play in0
MN = -m
mZ cos bcos qW
Z cos bsin qW
baryogenesis?
mZ sin bsin qW
T << TEW : mixing
~ ~
~0
of H,W to ~,
-mZ sin bsin qW
-mZ cos bsin qW
mZ cos bcos qW
mZ sin bsin qW
-mZ sin bsin qW
0
-
-
0
SUSY Baryogenesis & Dark Matter
Neutralino-driven
baryogenesis
Baryogenesis
Charginos &
neutralinos
LEP II Exclusion
Two loop de
Cirigliano,
Profumo, R-M
SUGRA: M2 ~ 2M1
AMSB: M1 ~ 3M2

SUSY Dark Matter: Solar Neutrinos
˜0

Z0
˜0



n
n
Neutralino-driven
 baryogenesis

SUGRA: M2 ~ 2M1
Gravitational capture in sun followed by
annihilation into high energy neutrinos
No signal in
SuperK detector
AMSB: M1 ~ 3M2
Cirigliano, Profumo, R-M
SUSY Dark Matter: Future Experiments
Neutralino-driven
baryogenesis & nonstandard cosmology
Assuming
W ~WCDM
Cirigliano,
Profumo, R-M
SUSY Baryogenesis & Colliders
LHC era complementarity:
• EDMs will remain most powerful
probe of electroweak baryogenesis
• DM searches will probe 0 driven
baryogenesis & non-st’d cosmology
• LHC will tellNeutralino-driven
us about Higgs &
baryogenesis
phase transition
LHC reach
ILC reach
Cirigliano,
Profumo, R-M
Precision Ewk Probes of New Symmetries
Electroweak
symmetry?
Unseen Forces:
Supersymmetry
breaking: Higgs ?
1.
2.
3.
4.
Unification & gravity
Weak scale stability

Origin of matter
Neutrinos
n
ne
˜
n
W
˜0




˜




e

QuickT ime™ and a
T IFF (Uncompressed) decompressor
are needed to see this picture.
QuickTime™ and a
TIFF(Uncompressed) decompressor
are needed to see this picture.
Qu ickT ime ™ a nd a
TIF F (U nco mpre sse d) de com pres sor
are nee ded to s ee th is pi cture .
Quic kTime™ and a
TIFF (Uncompres sed) dec ompressor
ar e needed to see this picture.
Beyond the SM
Qui ckT ime™ and a
T IFF (Uncompressed) decompressor
are needed to see this picture.
SM symmetry (broken)
Weak Decays: GF encodes information on
the spectrum via radiative corrections
Muon Decay
n
g
W





e


g
n
e


2 5
G
1
F m


3
  192

n

Z0
n
e
W





e



ne

n



e
W
W





2 
GF
g
1 r  

2 
2 8MW
rdepends on parameters
of particles inside loops


ne
Comparing radiative corrections in different
processes can probe particle spectrum
n
Z
e
0
g
g
n


e

  

n

Z0
n

n



e
Z0


e
e
n


Z0
e
n


GFZ  g2


  2 1 rZ 
2 8MW
rdiffers from rZ

Z0
e


Comparing radiative corrections in different
processes can probe particle spectrum
GFZ
 1 rZ  r 

GF
Z
t
0



Z
0
W

b
W

t
t

m
rZ ~ ln
 M
2
t
2
W



 mt2
r ~
2
 MW
Comparing radiative corrections in different
processes can probe particle spectrum
Direct
Measurements
Radiative
corrections
Probing Fundamental
• Precision
measurements
Symmetries
beyond
predicted
a range
for mt
the SM:
before
top quark discovery
low• mUse
mb !
t >> precision
energy measurements
• mt is consistent with that
to probe virtual effects
range
of new symmetries &
• Itcompare
didn’t have
tocollider
be that
with
way
results
Stunning SM Success
J. Ellison, UCI
Weak decays: light quarks
Vud

u c t Vcd

Vtd
d  u e ne
s  u e ne
b  u e ne

2
2
Vud  Vus  Vub
2
=
Vus Vub d
 
Vcs Vcb s 
 
Vts Vtb b
1
SM
0.9968 0.0014
Expt
0.94870.0010 0.04820.0008 0.000010.000007
Weak decays: light quarks
Vud

u c t Vcd

Vtd
d  u e ne
s  u e ne
b  u e ne

b-decay
n  p e ne


A(Z,N)  A(Z 1,N 1) e  n e
    0 e n e
Vus Vub d
 
Vcs Vcb s 
 
Vts Vtb b
GFb
 Vud 1 rb  r 

GF
SUSY loops

Weak decays & SUSY
Vud

u c t Vcd

Vtd
d  u e ne
s  u e ne
b  u e ne
n



˜

0

n


n p e ne

˜



SUSY
e
n
A(Z,N)  A(Z 1,N
1) e  n e

˜
n

0  n˜

   
e n e
˜0

GFb
 Vud 1 rb  r 

GF
e


O
 ~ 0.001
 OSM
W
b-decay
˜
n

ne
Vus Vub d
 
Vcs Vcb s 
 
Vts Vtb b
e
˜




e
SUSY

SUSY loops
r
SUSY Radiative Corrections
n
W
Propagator




n

Vertex &
External
 leg



˜
n
W
˜0



W


 
˜

˜
n

  n˜


n
ne



˜



ne 

e


e˜ 
W
n˜
 e 
˜ 


˜

e  
e


 
e

0



W

˜

n


n
ne

 
˜0


Box

˜

˜0

W




ne

e
ne

e


Weak decays & SUSY
R Parity Violation
R-M,
V Flavor-blind
dSu
VKurylov,
VSUSY-
d  u e ne
ud
us
breaking

u c t Vcd

Vtd
M
s  u e ne

b  u e ne
n
ne
O
˜


~ 0.001

SM
 12k ˜

12k

n  p e ne e n O

e
b-decay
e˜
˜
n
0

ne
W
k
W
R
SUSY




nd





en
A(Z,N)

A(Z
1,N
1)
e
n

e
˜
q

˜
n

0  n˜ 
1j1

   
e n e 1j1 
˜0





 
e
e
˜



 
Vcs Vcb s 
CKM
Unitarity
 
Vts Vtb b
CKM, (g-2),
MW, Mt ,…
b
F

F
APV
l2
G
 Vud 1 rb  r 
G
e
j
L

ub

e d
M˜ L  Mq˜ L
Kurylov,
No
long-lived LSPSUSY
or SUSY
loops
DMR-M
SUSY
RPV

CKM Summary: PDG04
Neutron
lifetime
e


J  pe
basymmetry
UCNA
J
CKM Summary: New Vus & n ?
Neutron
lifetime
Vus & Vud
theory ?
UCNA
New 0+
info
basymmetry
New n !!
Correlations
Weak decays & SUSY
Vud

u c t Vcd

Vtd
d  u e ne
s  u e ne
b  u e ne
n
Vus Vub d
 
Vcs Vcb s 
 
Vts Vtb b
J
n
˜
n



ne
W
˜0





˜



d

pe  pn
pnpe
dW 1 a Bme E eAJn   
E e En
EnE e
ne

u˜

SUSY
e
˜0

u

O
J  ~p 0.001
 OSM
n

˜



 

˜e
n

e
SUSY

Non (V-A) x (V-A)
interactions: me/E
Chiral symmetry in SUSY?
Weak decays & SUSY : Chiral Symmetry
Chiral () Rotation
Gauge interactions: 
symmetric
Higgs interactions: break 
symmetry, but gently for
1st & 2nd generations
Is sym breaking gentle
for 1st & 2nd generation
sfermions ?
Weak decays & SUSY : Correlations
Chiral symmetry breaking in SUSY
˜0

u
ne
˜e
n
u˜


d
˜



n
J







e
Future
exp’t ?
J  pn

Profumo,
R-M, Tulin
Mass suppressed 
symmetry breaking:
“alignment” models
Large symmetry
breaking: New
SUSY models
Pion leptonic decay & SUSY
SM strong interaction
effects: parameterized
by F Hard to compute



SM radiative
corrections
also have
QCD effects

n

˜0

u

To probe effects of new
physics in NEW we need
to contend with QCD 

˜
n


˜






n
u˜
d







n
Pion leptonic decay & SUSY
New TRIUMF, PSI

Leading QCD uncertainty:
Marciano
& Sirlin
˜0

u
ne
˜e
n
u˜

d

˜






e
˜0

u
 do 
?
Can we
better on


 Tulin, Su, R-M


˜





˜
n

d

Prelim
n
u˜
vs

n
Probing Slepton Universality




Min

(GeV)
Lepton Scattering & New Symmetries
Parity-Violating electron scattering
e


e

Z

0
e , p
e

e , p
e , p
e

e , p

N  N
GF Q2
2
APV 


Q

F(Q
,q )

W

N  N 4 2
“Weak Charge” ~ 0.1 in SM

Enhanced transparency to new
physics
Small QCD uncertainties
(Marciano & Sirlin; Erler & R-M)
QCD effects (s-quarks):
measured (McKeown,
Souder, Beck,…)
Probing SUSY with PV eN Interactions
e
Z

SUSY
dark matter
e


˜

0

Z0

˜  


 


f
SUSY loops



e˜ 
e
f
e



 e˜




f

f

QWp,SUSYQuickTime™
QWp,SM and a TIFF (Uncompressed) decompressor are needed to see this picture.
n is Majorana
ne
e
˜ Rk
e
Q
e, SUSY
W
Kurylov, Su, MR-M
RPV 95% CL fit to
12k decays, M ,etc.
12k
weak
W
n
e, SM
W
Q


Probing SUSY with PV eN Interactions
Kurylov, R-M, Su
“DIS Parity”
SUSY loops
SUSY
N SUSY
dark
darkmatter
matter
E158 &QWeak
QWp,SUSYQuickTime™
QWp,SM and a TIFF (Uncompressed) decompressor are needed to see this picture.
Linear
collider
JLab Moller
RPV 95% CL
QWe,SUSY QWe, SM
Conclusions
• The fundamental symmetries of the Standard Model
provide a successful basis for explaining the microphysics
of the present universe, but additional symmetries are
needed to address important questions about earlier times
Origin of matter, unification, size of the Fermi
constant, neutrino mass, gravity,…
• High precision, low-energy studies provide a powerful
probe of new symmetries that complement the view
provided by colliders
EDMs, weak decays, lepton scattering, neutrino
properties & interactions, lepton flavor…
• This field provides a rich interplay of particle, nuclear, &
atomic physics with cosmology in both theory & exp’t