Lecture 11-12 - เว็บไซต์บุคลากรภาควิชาวิทยาการคอมพิวเตอร์
Download
Report
Transcript Lecture 11-12 - เว็บไซต์บุคลากรภาควิชาวิทยาการคอมพิวเตอร์
Chapter 3
Heuristic Search Techniques (continue)
323-670 Artificial Intelligence
ดร.วิภาดา เวทย์ ประสิทธิ์ ภาควิชาวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์
Constraint Satisfaction
limit on time, cost, materials
reduce search space
process
step 1. constraint are discover and propagate as
far as possible
if no solution found search again
step 2. Guess about something is made to set a
new constraint and propagate with the new
constraint
EX:
323-670 Artificial Intelligence
N=E+1
N=3
E=2
..................(1)
..................(2)
..................(3)
Lecture 11-12
Page 2
Constraint Satisfaction
To terminate the current path:
1. found contradiction
If we found contradiction then we know
that there is no solution
2. propagation run out of stream or no further
changes that can be made on the basis of current
basis.
backtracking : will be use to find a new path
when found contradiction in the current
path or no further change in the current
path..
more powerful rules less guessing needed
323-670 Artificial Intelligence
Lecture 11-12
Page 3
Constraint Satisfaction
constraint :
1) simple : list of possible value for a single
object dynamic value
describe explicitly in each
problem state
2) complex : describe relationship between
or among objects
dynamic value or
static value : ex. waltz problem
p.374 ***
DDB : dependency–directed backtracking
p.211 ***
323-670 Artificial Intelligence
Lecture 11-12
Page 4
Constraint Satisfaction Algorithm
p. 90
323-670 Artificial Intelligence
Lecture 11-12
Page 5
Cryptarithmetic Problem
323-670 Artificial Intelligence
Lecture 11-12
Page 6
Means-Ends Analysis
Allow mixed strategy : forward chaining and
backward chaining
Operator subgoal/ priority level for each
subgoal
recursive process
GPS : general problem solver [Newell and
Simon 1963]
not suitable for very large problem
more example of clock world is in chapter
13, p. 332
323-670 Artificial Intelligence
Lecture 11-12
Page 7
Means-Ends Analysis
Rules consist of : figure 3.15
Left side : PRECONDITION
Right side: describe problem state that will be changed
by the application of the rule.
323-670 Artificial Intelligence
Lecture 11-12
Page 8
Means-Ends Analysis
PROBLEM TO SOLVE : ROBOT
Moving a desk with two things on it from one
room to another.......
they may be more than one operator to do
the job for reducing the difference
carry : small object
push : large object
change size of object operator : saw_apart ?
323-670 Artificial Intelligence
Lecture 11-12
Page 9
Means-Ends Analysis
Difference Table : figure 3.16
323-670 Artificial Intelligence
Lecture 11-12
Page 10
Means-Ends Analysis
chair
C to E = ?
chair
C to E = WALK PICKUP CARRY
323-670 Artificial Intelligence
Lecture 11-12
Page 11
Means-Ends Analysis
p. 97
323-670 Artificial Intelligence
Lecture 11-12
Page 12
Summary
The difference among the proposed algorithms
How, at each state of the search process, a state is
selected for expansion.
How operator to be apply to that nose is selected.
Whether an optimal solution can be guaranteed.
Whether a given state may end up being considered
more than once.
How many search descriptions must be maintained
throughout the search process.
Under what circumstances should a particular search
path be abandoned.
323-670 Artificial Intelligence
Lecture 11-12
Page 13
END Chapter 3
Jim Miller
323-670 Artificial Intelligence
Lecture 11-12
Page 14