Transcript D. Heinert

Properties of candidate materials for cryogenic mirrors
Properties of candidate materials
for cryogenic mirrors
D. Heinert, R. Nawrodt, C. Schwarz, P. Seidel
Institute of Solid State Physics,
University of Jena
Kyoto, 18th May 2010
Heinert et al.
01.03.2010
1
2nd generation detectors
way to 3rd generation
Properties of candidate materials for cryogenic mirrors
outline
I current detector parameters
• sensitivity
• noise sources
II improvement to 3rd generation
• possibilities of increasing sensitivity
• challenges (thermal lensing, cooling)
• substrate noise contributions
 impact on detector‘s working point
 estimate resulting noise for ET
III conclusion
Heinert et al.
01.03.2010
2
planned sensitivities
2nd generation detectors
thermal noise calculation
way to 3rd generation
thermal noise spectrum
Properties of candidate materials for cryogenic mirrors
3
Planned detector sensitivities
• steps for 2nd to 3rd
generation:
a) increase laser power
b) decrease thermal noise
(substrate and coating)
Heinert et al.
01.03.2010
planned sensitivities
2nd generation detectors
thermal noise calculation
way to 3rd generation
thermal noise spectrum
Properties of candidate materials for cryogenic mirrors
4
Thermal noise processes
substrate
coating
• Brownian noise
S
ITM
X
2k BT 1   2
( f , T )  3/ 2 
 substrate( f , T )
 f
wY
Sx ( f ,T ) 
[Liu, Thorne 2000]
2k BT d  Y '
Y 


 

||
2
2
 f w Y Y
Y' 
[Harry et al. 2002]
general result
• Thermoelastic noise
S
ITM
TE
S x ( ) ~ T  
4k BT  1    
( f ,T ) 
 5 / 2  2 C 2 f 2 w3
2
2
~2
8k BT 2 d  S CF
2
1   s   g ( )
STE ( f , T )  2
2
 f w CS
2
[Braginsky 1999]
Heinert et al.
[Braginsky, Fejer et al. 2004]
01.03.2010
planned sensitivities
2nd generation detectors
thermal noise calculation
way to 3rd generation
thermal noise spectrum
Properties of candidate materials for cryogenic mirrors
Thermal noise for AdvLIGO
[R. Adhikari]
• thermal noise with minor influence on total sensitivity
Heinert et al.
01.03.2010
5
thermal lensing
2nd generation detectors
TE noise of crystals
way to 3rd generation
silicon vs. sapphire
Properties of candidate materials for cryogenic mirrors
Task 1: Reducing photon shot noise
• requires increase of laser power in the interferometer
 increase of optically absorbed power in the test mass
• change of refractive index  variation of wave front
 effect of thermal lensing of transmissive parts
• fused silica with high  
dn
 14  10 6 K 1
dT
 optical instability of the interferometer
• strategies to solve the problem
decrease 
increase thermal conductivity
Heinert et al.
01.03.2010
6
thermal lensing
2nd generation detectors
TE noise of crystals
way to 3rd generation
silicon vs. sapphire
Properties of candidate materials for cryogenic mirrors
7
Decrease of thermal lensing I: decrease of beta
• Why not just cool fused silica test masses?
0
n(T ) T
 const ,
dn T 0

 0
dT
 no thermal lensing
• But: remember thermal noise expressions
[Nawrodt 2008]
S x ( ) ~ T  
1E-3
 this even overcompensates
benefit due to cooling
explanation:
- defect energy distribution in
amorphous solids
(jumps of oxygen in the structure)
mechanical loss 
• fused silica show increasing loss
for decreasing temperature
1E-4
1E-5
1E-6
1E-7
0
50
100
150
200
temperature T [K]
Heinert et al.
01.03.2010
250
300
thermal lensing
2nd generation detectors
TE noise of crystals
way to 3rd generation
silicon vs. sapphire
Properties of candidate materials for cryogenic mirrors
8
Decrease of thermal lensing II: increasing thermal conductivity
• general temperature behaviour
of thermal conductivity

b)
3 zones:
a) phonon population
b) defects
c) phonon collisions
a)
c)
 defects limit global
maximum of thermal
conductivity
20…40 K
• defects are
- surface of the sample
- lattice defects
temperature
 crystalline samples
(candidates: sapphire, silicon)
Heinert et al.
01.03.2010
thermal lensing
2nd generation detectors
TE noise of crystals
way to 3rd generation
silicon vs. sapphire
Properties of candidate materials for cryogenic mirrors
9
Assumed numbers for thermal conductivity
our values (pure silicon with low defects)
Heinert et al.
[Touloukian]
01.03.2010
thermal lensing
2nd generation detectors
TE noise of crystals
way to 3rd generation
silicon vs. sapphire
Properties of candidate materials for cryogenic mirrors
10
Consequences for thermoelastic noise
• Zener‘s model for thermoelastic damping  change of thermoelastic noise via FDT
ET0 2 
h 2 C
~
,  2
C 1   2 2


h
• alpha is high in crystalline solids
[Zener, 1937]
• change in thermal conductivity changes position of maximum for TE losses
2
10
fused silica
-2
1
10
0
-3
10
fmax [Hz]
fmax [Hz]
silicon
h=30 cm
10
10
-1
10
-4
10
-2
10
-3
-5
10
0
50
100
150
200
250
300
10
0
50
100
150
T [K]
T [K]
Heinert et al.
01.03.2010
200
250
300
thermal lensing
2nd generation detectors
TE noise of crystals
way to 3rd generation
silicon vs. sapphire
Properties of candidate materials for cryogenic mirrors
11
Rigorous noise calculation for silicon (Ø 50 cm x 30 cm, 111)
10
10
10
T=300 K
-18
10
bulk Brownian
bulk TE
coating Brownian
coating TE
coating TR
total
-20
thermal noise [m/ Hz]
thermal noise [m/ Hz]
10
-22
-24
10
0
10
1
2
10
frequency [Hz]
10
3
10
4
10
10
10
T=20 K
-18
bulk Brownian
bulk TE
coating Brownian
coating TE
coating TR
total
-20
-22
-24
10
0
10
1
2
10
frequency [Hz]
10
3
 coating Brownian dominates noise spectrum for low temperatures
 hope for alternative reflection concepts (gratings, Khalili etalons, …)
• restriction of the detector‘s working point temperature, ideal:T  18 K    0
Heinert et al.
01.03.2010
10
4
thermal lensing
2nd generation detectors
TE noise of crystals
way to 3rd generation
silicon vs. sapphire
Properties of candidate materials for cryogenic mirrors
12
Rigorous noise calculation for sapphire (Ø 50 cm x 30 cm, zcut)
T=300 K
10
10
10
-18
10
bulk Brownian
bulk TE
coating Brownian
coating TE
coating TR
total
-20
thermal noise [m/ Hz]
thermal noise [m/ Hz]
10
T=20 K
-22
-24
10
0
10
1
2
10
frequency [Hz]
10
3
10
4
10
10
10
-18
bulk Brownian
bulk TE
coating Brownian
coating TE
coating TR
total
-20
-22
-24
10
0
10
1
2
10
frequency [Hz]
• bulk thermoelastic in the same order as coating Brownian for 20 K
Heinert et al.
01.03.2010
10
3
10
4
thermal lensing
2nd generation detectors
TE noise of crystals
way to 3rd generation
silicon vs. sapphire
Properties of candidate materials for cryogenic mirrors
13
Silicon vs. Sapphire
Silicon
Sapphire
thermal noise requirements
good
good
hardness  machinability
good
bad
industrial background
good
bad
bad
medium
optical absorption at 1064 nm
• change of wavelength to 1550 nm will increase Brownian coating noise moderately,
4
but also decreases stray light by factor 4.5 (  )
• monocrystalline silicon available in diameters up to 50 cm within the next 5 years
 silicon is presently the best choice for substrate material
Heinert et al.
01.03.2010
thermal lensing
2nd generation detectors
TE noise of crystals
way to 3rd generation
silicon vs. sapphire
Properties of candidate materials for cryogenic mirrors
14
Temperature dependene of mechanical loss of silicon
• measurement for crystalline silicon (Ø 76.2 mm x 75 mm)
-7
10
mechanical loss
111
100
 silicon maintains low
losses at low temperatures
S x ( ) ~ T  
-8
10
 low Brownian noise
• further information:
see talk of Ch. Schwarz
-9
10
0
50
100
150
200
250
300
temperature [K]
Heinert et al.
01.03.2010
2nd generation detectors
way to 3rd generation
Properties of candidate materials for cryogenic mirrors
15
Conclusions
• to achieve 3rd generation sensitivity we have to go cryogenic
• no fused silica due to high Brownian noise
• silicon as main candidate for substrate material with
- availability of large geometries
- big industry behind
 cool detector to 20 K due to high thermoelastic noise
 change wavelength to 1550nm due to optical absorption
• coating Brownian noise dominates below ca. 25 K
• achievable noise at 20 K:
S x (100 Hz )  11022
Heinert et al.
m
Hz
01.03.2010