Transcript L/f 1
Optical instruments
PHY232
Remco Zegers
[email protected]
Room W109 – cyclotron building
http://www.nscl.msu.edu/~zegers/phy232.html
optical instruments
Most optical instruments involve just the laws of reflection
and refraction – microscope, telescope etc
some optical instruments make use of the wave-nature of
light, such as the interferometer
In this chapter we consider some optical instruments,
starting with the eye
PHY232 - Remco Zegers
- optical instruments
2
the eye
the eye essentially consists of a lens that focuses light on
the retina. The ciliary muscles are used to change the
curvature of the lens and hence the focal length.
PHY232 - Remco Zegers
- optical instruments
3
the eye II
when the ciliary muscles are relaxed, an object at infinity is focused
onto the retina. The focal length is about 1.7 cm.
optometrists define the power P of a lens in terms of diopters
D=1/f (f in m, D in diopters 1/m)
the typical eye has a power of 1/0.017 m=59 diopters
PHY232 - Remco Zegers
- optical instruments
4
the far-point
The largest distance that can clearly be seen is called the far-point FP.
a good human eye can visualize objects that are extremely far away
(moon/stars) and the far point is then close to infinity.
PHY232 - Remco Zegers
- optical instruments
5
nearsightedness (myopia)
In case of nearsightedness, the
far-point is much smaller than
infinity for example because
the eyeball is elongated.
on object placed at infinity is
focused in front of the retina.
this can be corrected using a
diverging lens…
PHY232 - Remco Zegers
- optical instruments
6
example
A person cannot see objects clearly that are more than 50
cm away from his eye. An optometrist therefore prescribes
glasses to solve the problem. What should the power of
the lens be (in diopters) to solve the problem? You can
ignore the distance between the glasses and the eye lens.
without
glasses
-
-
-
20/20 vision: you can see on the chart what average people
can see from 20 feet
PHY232 - Remco Zegers
- optical instruments
7
the near point
The near-point is the closest distance in front the eye that
a person is capable of focusing light on the retina
the near-point for a normal person is about 25 cm, making
it hard to focus an object closer to you eyes than that.
PHY232 - Remco Zegers
- optical instruments
8
farsightedness (hyperopia)
happens when the nearpoint is much larger than
25 cm.
it becomes hard to see
objects nearby since the
eye muscles cannot
accommodate it.
it can be corrected using a
converging lens (reading
glasses)
PHY232 - Remco Zegers
- optical instruments
9
example
a person suffering from hyperopia has a near point of 1 m.
The optometrist has to prescribe a lens of what power to put
the near point back at 25 cm?
PHY232 - Remco Zegers
- optical instruments
10
question
a person has a far-point of 1 m and a near point of 75 cm.
In order to help this person see objects that are far away
and allows him/her to read a book…
a) bi-focal glasses are needed, which are partly diverging
and partly converging
b) glasses are needed that bring the far-point and the
near-point together
c) an operation is needed to solve at least one of the
problems so that the other can be solved with glasses
PHY232 - Remco Zegers
- optical instruments
11
lon-capa
do questions 10,11 from set 9
PHY232 - Remco Zegers
- optical instruments
12
simple magnifier
0
h
eye
NP
h’
h
p
f
q
the best result is obtained
if the image is at infinity
(eye relaxed). to do so p=f
and m=NP/f
PHY232 - Remco Zegers
normal eye cannot focus if the object
distance < near point (NP)
therefore, the maximum subtended angle
equals:
0=h/NP=h/(25 cm)
(assumed that tan= : small
if we put the same object in front of a
converging lens with p<f, a virtual upright
image is created
1/p+1/q=1/f with p<f
q=pf/(p-f) with p<f so q: negative
M=himage/hobject
=-q/p=-f/|f-p| with p<f so M>1
maximum subtended angle now equals:
I=h’/q=h/p
angular magnification m=I/0
m=I/0=(h/p)/(h/NP)=NP/p
- optical instruments
13
example
A lens with f=10 cm is used as a magnifier. What is the angular
magnification if the image if formed at the near point?
What is the angular magnification if the eye is relaxed (image at
infinity?)
PHY232 - Remco Zegers
- optical instruments
14
the microscope…
L
…uses two converging lenses with focal lengths f1 and f2 with f2>f1
moreover, L>>f2
For lens 1: p1 is chosen such that q1~L (image 1 will appear just within F2)
This happens when p1~f1
so: M1=-q1/p1=-L/f1
Lens two then acts as a magnifying glass with m2=NP/f2=25/f2
The magnifying power is defined as m=M1m2=(-L/f1)(25/f2)=-25L/(f1f2)
(all units in cm), usually written as: m=-25L/(fOfe) (inverted!)
with O for objective and e for eyepiece
PHY232 - Remco Zegers
- optical instruments
15
example
A red blood cell has a size of about 7x10-6 m. A
microscope is used to visualize it. The microscope
has L=30cm, f0=1 cm, fe=0.5 cm. How large is the cell
when seen through the microscope?
PHY232 - Remco Zegers
- optical instruments
16
L
a telescope
size of image of
objective lens: hi
e
o
a telescope is very similar to a microscope except that the lenses are
slightly differently configured:
light comes in (from a star) almost parallel. It is focused at the focus
point fo of the first converging (objective) lens.
this image becomes the object for the second converging (eyepiece)
lens and is place just at the focal length fe of that lens.
tan(o)o=hi/fo
tan(e)e=hi/fe
magnifying power m= e/o=fo/fe note L=f0+fe
PHY232 - Remco Zegers
- optical instruments
17
example
A telescope has two lenses which are 92 cm apart from
eachother. The angular magnification of the telescope is
45. What are the focal lengths of the objective and eyepiece lens?
PHY232 - Remco Zegers
- optical instruments
18
loncapa
do problem 12 from lon-capa 9
PHY232 - Remco Zegers
- optical instruments
19
resolution
resolution: the ability of an optical system to distinguish
between two closely spaced objects
resolution is limited by the wave nature of light: when light
passes through a slit, it is diffracted and thus smeared out.
if the angular separation becomes two small, objects
become hard to distinguish
PHY232 - Remco Zegers
- optical instruments
20
rayleigh’s criterion
two images are just resolved if rayleigh’s criterion is fulfilled.
Rayleigh’s criterion: the central maximum of image A false into the
first minimum of image B
first diffraction minimum: sin=/a with A the slitwidth
images separated by a minimum angle min=/a can just be resolved
if the aperture is circular with diameter D: min=1.22/D
PHY232 - Remco Zegers
- optical instruments
21
min=1.22/D
question
a binary star system consists of two stars that are rotating
around each other. Because of there closeness they are
hard to separate. A color filter can be used to improve the
separation. Is it better to use blue or red to make a picture
that best separates the stars?
a) Blue
b) Red
c) doesn’t matter
PHY232 - Remco Zegers
- optical instruments
22
lon-capa
do problem 13 from lon-capa 9
use min=1.22/D
distance earth moon is 3.84E+8 m
how to calculate min? you can use tan= (radians)
use a wavelength of 550 nm
PHY232 - Remco Zegers
- optical instruments
23
The Michelson Interferometer
moveable
1)
2)
3)
4)
5)
6)
monochromatic light is incident on mirror
light travels to moveable mirror and is… 1
reflected
some light is also passed through and is …
reflected
beam 3) and 5) interfere and make an
interference pattern
7) by moving the moveable mirror, the path
length difference can be varied
PHY232 - Remco Zegers
- optical instruments
3
2
5
6
4
24
Michelson interferometer
moveable
3
2
5
1
6
4
the compensator servers to make sure that the light going to either
branch travels the same distance through the glass.
The path length difference D=2d23-2d45
If the movable mirror moves by /2, D changes by and the
interference pattern is shifted by 1 fringe.
Insertion of a material with index of refraction n in path 2-3 will also
make a path length difference, and by observing the change in the
interference pattern, one could determine n
more about this in the last week’s lecture on relativity…
PHY232 - Remco Zegers
- optical instruments
25