Transcript 投影片 1

Neck Muscles Modeling on Cervical
Spine Injury during Collisions
Advisor: Sai-Wei, Yang
Reporter: Yuan-Yi, Fan
2007/6/6
Research on head-neck complex
Experimental approach
1. Ewing CL, 1976
2. Deng YC, 1987
3. Nightingale RW, 1996
Numerical approach
1. Deng YC, 1987
2. Jager de M, 1996
3. Yang KH, 1998
4. Vasavada AN, 1998
5. Chancey VC, 2003
6. Brolin K, 2005
Injury Types Adams JC, Outline of Fracture, 1987
3
1
2
Flexion and flexion-rotation injury:
Wedge compression fracture/
subluxation/dislocation at C5C6
Vertical loading:
Burst fracture
4
6
Extension subluxation:
ALL ruptured
7
5
Vertical compression:
Fracture of atlas
Fracture of base
of dens:
Spinal cord
damaged severely
Intraspinal displacement:
Prolapse of intervertebral disc
Infolding of ligamentum flavum
Summary
• Limitation of human tolerance to high energy impact, data
from volunteer sled-test are scarce
• Numerical simulation is cost-saving and easily-conditioning
for crash simulation repeatability
• Activation level changes 36% of the peak resultant linear
acceleration of head CG while the rest have at most 5% change
(BF Janet, 2005)
• Muscles affect the responses of the head neck model
(K Brolin, 2005; M de Jager, 1996; VC Chancey, 2003; BF Janet, 2005)
• Few studies of motorcycle vehicle crash investigate headneck-torso injury mechanisms with respect to rigid body
dynamics into finite element analysis
(IH Lee, 2004; EC Teo, 2007)
Purpose
• To investigate the effect of neck muscles on
cervical spine injury during collisions by
adjusting activation level of muscles
Construction of torso
Connection of head, neck
and torso model
Validation of upper torso
replacement
Impact simulations
End impact
Frontal impact
Modeling without muscles
Side impact
Side-swipe impact
Modeling with muscles
Injury analysis
Effect of muscle modeling during collisions
Software: LS DYNA
Head: brain, diploe, skull, CSF, Ruan, 1991
Cervical spine: C1-T1 vertebrae body, ligaments,
discs, Yang KH, 1998
Head neck torso: validated by Cheng YL, 2005
(Nightingale RW, 1996,
in 15/-15 degree rigid surface
drop-test)
Upper torso development:
1. Hybrid III geometry
2. Center of mass, moment of inertia,
mass according to NASA Anthropometric data
3. Connection to cervical spine
Muscles modeling development:
1. 8 pairs of muscles
2. 10 muscle parameters
3. Origin and insertion according to
Werner Platzer, Locomotor System, Thieme
Validation of Upper Torso Replacement in
Drop Test
(with regard to Cheng, YL, 2004)
•
•
•
Original:
Torso #1: 6 nodes to transfer load
Torso #2: 44 nodes to transfer load (encircle the surface of cortical bone)
Boundary conditions in LS DYNA
Rear end impact:
T=2.125 sec
Velocity of
Motorcycle
(km/h)
Head-on
35
Velocity of Angle
Vehicle
(km/h)
55
180
Lateral
34
35
90
Sideswipe
35
54.7
45
Rear-end
22
62
0
Wu, CY, 2003
Frontal impact:
T=2.125 sec
Side impact:
T=2.075 sec
Muscles, 3 extensors & 5 flexors
Lo
Vmax
Sv
A
Fmax
FPE
Longus Capitis (E)
7.26
0.421
1
0~1
141.6
*
Scalenus Anterior (F)
10.23
0.565
1
0~1
155.2
*
Scalenus Medium (F)
7.28
0.422
1
0~1
207.6
*
Scalenus Posterior (F)
6.38
0.370
1
0~1
163.2
*
Semispinalis Capitis (E)
14.8
1.072
1
0~1
260.4
*
Splenius Cervicis (E)
11.77
0.850
1
0~1
318.4
*
Sternocleidomastoid (F)
18.06
1.111
1
0~1
381.2
*
Trapezius (F)
19.97
1.290
1
0~1
340.8
*
Lmasx
-0.25
-0.808
-0.251
-0.22
3.062
2.405
0.463
1.536
*: load curve
KSH
origin
insert
Strands
0.5
Skull
C4~C7
4
0.5
C4~C6
T1
4
0.5
C1~C6
T1
6
0.5
C2~C6
T1
4
0.5
Skull
C2~T1
6
0.5
C1~C6
T1
6
0.5
Skull
T1
2
0.5
Skull
T1
6
Tension-Length and Tension-Velocity
Relation of Muscle
• TL=1.05
• TV=1
Winters JM, 1999, Hill-based Muscle Model:
A System Engineering Perspective, Springer-Verlag, 1990
Strength of Bone, Tendon,
and Muscle
Strength of Ligaments
C2-C5
Energy
(Nm)
Stress
(MPa)
Strain (%)
ALL
0.61
8.36
30.8
PLL
0.21
6.29
18.2
JC
1.49
5.67
148
LF
0.49
2.64
77.0
ISL
0.13
2.97
60.9
C5-T1
Energy
(Nm)
Stress
(MPa)
Strain (%)
ALL
0.54
12.0
35.4
PLL
0.4
12.8
34.1
JC
1.5
7.36
116
LF
0.91
2.64
88.4
ISL
0.18
2.88
68.1
σuc
(MP
a)
εuc
σut
(MPa)
εut
strain
energ
y
storag
e
(J/Kg)
Bone
250
0.026
150
0.042
2.8*10^
2
Tendon
X
X
100
X
2.8*10^
3
Muscle
X
X
0.35
X
4.7
Curey JD, Bones- Structure and Mechanics, 2002
Yoganandan N., et al, Geometric and Mechanical Properties
of Human Cervical Spine Ligaments, (2000), ASME
•
Injury Criteria:
Bone: brittle material  1st principle stress
>250 MPa for compression
>150 Mpa for tension
Ligament: ductile material  von Mises stress
>2.64~12.8MPa for tension only
Weighting for Muscle Groups
Test of Neutral Position against Gravity
Lo
Vmax
A
Longus Capitis (E)
7.26
0.421
0.7
Scalenus Anterior (F)
10.23
0.565
0.7
Scalenus Medium (F)
7.28
0.422
0.7
Scalenus Posterior (F)
6.38
0.370
0.7
Semispinalis Capitis (E)
14.8
1.072
0.1
Splenius Cervicis (E)
11.77
0.850
0.1
Sternocleidomastoid (F)
18.06
1.111
0.1
Trapezius (F)
19.97
1.290
0.1
End impact
Time
(msec)
Stress level
(MPa)
Location
Injury
type
No muscle
3
262.466
#16166 (Dens)
5
Muscle, A=0
7.3
256.345
#13131 (T1)
*
Muscle,
A=0.3
2
382.854
#15028 (C1)
4
Muscle,
A=0.5
0.19
278.598
#13858 (T1)
*
Muscle,
A=0.7
0.69
338.1
#13858 (T1)
*
Muscle, A=1
0.19
554.736
#13858 (T1)
*
(σc)
1st principle stress
Limitation
1. curved line of action of muscle forces
2. only 8 muscle groups in this model
Discussion
1. fully-activation, neutral-position-activation,
and relaxed-activation in this model; lack of
activation pattern of neck muscle response in
collision
References
•
•
•
•
•
•
•
•
•
•
•
•
Brolin, K., Halldin, P., Leijonhufvud, I., (2005). The effect of muscle activation on neck response.
Traffic.Inj.Prev. 6, 67-76.
Deng, Y. C., Goldsmith, W., (1987). Response of a human head/neck/upper-torso replica to dynamic
loading--II. Analytical/numerical model. J.Biomech. 200, 487-497.
M de Jager, A Sauren, J Thunnissen, J Wismans, (1996). A global and a detailed mathematical model for
head neck dynamics. SAE.
Nightingale, R. W., McElhaney, J. H., Richardson, W. J., Myers, B. S., (1996). Dynamic responses of the
head and cervical spine to axial impact loading. J.Biomech. 29, 3X7-318.
Teo, E. C., Zhang, Q. H., Huang, R. C., (2007). Finite element analysis of head-neck kinematics during
motor vehicle accidents: analysis in multiple planes. Med.Eng Phys. 29, 54-600.
Yang K. H., Zhu F., Luan F., Zhao L., Begeman P. C., (1998). Development of a Finite Element Model of
the Human Neck. SAE 983157
Chancey V. C., Nightingale R. W., Van Ee C. A., Knaub K. E., Myers B. S., (2003). Improved Estimation of
Human Neck Tensile Tolerance: Reducing the Range of Reported Tolerance Using Anthropometrically
Correct Muscles and Optimized Physiologic Initial Conditions. Stapp Vol. 47, pp. 135-153
Lee I. H., CHOI H. Y., LEE J. H., HAN D. C., (2004). Development of Finite Element Human Neck Model
For Vehicle Safety Ssimulation, International Journal of Automotive Technology, Vol. 5, No. 1, pp. 33−46
Janet B. F., PAaras S. and Mohamed E. S., (2005). Physically correlated muscle activation for a human head
and neck computational model, Computer Methods in Biomechanics and Biomedical Engineering, Vol. 8,
No. 3, June 2005, 191–199
Ewing C.L., Thomas D.J., Human head and neck response to impact acceleration, (1973). NAMRL
Monograph Pensacola, FL: Naval Aerospace Medical Research Laboratory, p. 32512.
Ewing C.L., et al. Dynamic response of human and primate head and neck to +Gy impact acceleration,
(1978). Report DOT HS-803 058
Yoganandan N. Kumaresan S., Pintar F. A., (2000) Geometric and Mechanical Properties of Human
Cervical Spine Ligaments, ASME
Thanks for your attention