Using Social Networks to Personalize News
Download
Report
Transcript Using Social Networks to Personalize News
Recommender Systems
Finding Trusted Information
How many cows in Texas?
http://www.cowabduction.com/
Outline
What are Recommender Systems?
How do they work?
How can we integrate social information /
trust?
What are some applications?
Netflix
Amazon
How do they work?
Two main methods
Find things people similar to me like
Find things similar to the things I like
Example with People
Star Wars Jaws
Alice
Bob
Chuck
Who is a better predictor for Alice?
Compute the correlation:
5
3
4
Wizard of The
Oz
Godfather
4
3
3
5
2
5
3
2
2
Bob 0.26
Chuck: 0.82
Recommend a rating of “Vertigo” for Alice
Bob rates it a 3
Chuck rates it a 5
(0.26 * 3 + 0.82 * 5) / (0.26+ 0.82) = 4.5
2001
1
1
2
Item similarity
Methods are more complex
Computed using features of items
E.g. genre, year, director, actors, etc.
Some sites use a very nuanced set of features
Music DNA
arrangement - the selection and adaptation of a
composition or parts of a composition to instruments for
which it was not originally designed
beat - the regular pulse of music
form - the structure of a composition, the frame upon which
it is constructed; based upon repetition, contrast, and
variation
harmony - the concordant (or consonant) combination of
notes sounded simultaneously to produce chords
lyrics - the words of a song
melody - a succession of tones comprised of mode, rhythm,
and pitches so arranged as to achieve musical shape
More DNA
orchestration - the art of arranging a composition for
performance by an instrumental ensemble
rhythm - the subdivision of a space of time into a defined,
repeated pattern
syncopation - deliberate upsetting of the meter or pulse
of a composition by means of a temporary shifting of the
accent to a weak beat or an off-beat
tempo - the speed of the rhythm of a composition
vamping - to extemporize the accompaniment to a solo
voice or instrument
voice - the production of sound from the vocal chords,
often used in music; falls into six basic categories defined
by pitch, ranging, from bottom to top, Bass, Baritone,
Tenor, Contralto, Mezzo Soprano, and Soprano
How good is a Recommender System?
Generally: error
Error = My rating - Recommended Rating
Do this for all items and take the average
Need alternative ways of evaluating systems
Serendipity over accuracy
Diversity
Trust in Recommender Systems
If we have a social network, can we use it to
build trusted recommender systems?
Where does the trust come from?
How can we compute trust?
Some example applications
In-Class Exercise
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Your Favorite Movie
Your Least Favorite Movie
Some Mediocre Movie
Some Mediocre Movie
Some Mediocre Movie
Some Mediocre Movie
Some Mediocre Movie
Some Mediocre Movie
Some Mediocre Movie
Some Mediocre Movie
Sample Profile
Movie
Jaws
A Clockwork Orange
North by Northwest
Peeping Tom
The Godfather
The Matrix 2
Elf
Gone with the Wind
Madagascar
1408
Your Rating User 7's Rating Difference
10
1
10
1
7
4
8
7
4
3
4
7
4
7
6
5
7
8
3
4
Knowing this information, how much do you trust
User 7 about movies?
6
6
6
6
1
1
1
1
1
1
Factors Impacting Trust
Overall Similarity
Similarity on items with extreme ratings
Single largest difference
Subject’s propensity to trust
Advogato
Peer certification of users
Master: principal author or hard-working co-author of
an "important" free software project
Journeyer: people who make free software happen
Apprentice: someone who has contributed in some
way to a free software project, but is still striving to
acquire the skills and standing in the community to
make more significant contributions
Advogato trust metric applied to determine
certification
Advogato Website
http://www.advogato.org/
Certifications are used to control permissions
Only certified users have permission to
comment
Combination of certifications and interest
ratings of users’ blogs are used to filter posts
MoleSkiing
http://www.moleskiing.it/ (note: in Italian)
Ski mountaineers provide information about
their trips
Users express their level of trust in other users
The system shows only trusted information to
every user
Uses MoleTrust algortihm
FilmTrust
Movie Recommender
Website has a social network where users rate
how much they trust their friends about movies
Movie recommendations are made using trust
Recommended Rating = Weighted average of all
ratings, where weight is the trust (direct or inferred)
that the user has for the rater
Challenges
Can these kinds of approaches create
problems?
Recommender Systems - recommending items
that are too similar
Trust-based recommendations - preventing
the user from seeing other perspectives
Conclusions
Recommender systems create personalized
suggestions to users
Social trust is another way of personalizing
content recommendations
Connect social relationships with online
content to highlight the most trustworthy
information
Still many challenges to doing this well