COMP4690 Tutorial
Download
Report
Transcript COMP4690 Tutorial
COMP4690 Tutorial
Cryptography
&
Number Theory
Outline
DES Example
Number Theory
RSA Example
Diffie-Hellman Example
DES
Some remarks
DES works on bits
DES works by encrypting groups of 64 bits, which is the same as
16 hexadecimal numbers
DES uses keys which are also apparently 64 bits long. However,
every 8th key bit is ignored in the DES algorithm, so the effective
key size is 56 bits.
If the length of the message to be encrypted is not a multiple of
64 bits, it must be padded. E.g.:
The plaintext message "Your lips are smoother than vaseline" is, in
hexadecimal, "596F7572206C6970 732061726520736D
6F6F746865722074 68616E2076617365 6C696E650D0A".
We then pad this message with some 0s on the end, to get a total of
80 hexadecimal digits: "596F7572206C6970 732061726520736D
6F6F746865722074 68616E2076617365 6C696E650D0A0000".
Then apply DES.
Key generation example
Let K be the hexadecimal key K =
133457799BBCDFF1. This gives us as the
binary key :
K = 0001 0011 0011 0100 0101 0111 0111
1001 1001 1011 1011 1100 1101 1111 1111
0001
16 subkeys (48-bit) will be generated from K.
Key generation example
Based on table PC-1 (Permuted Choice 1),
we get the 56-bit permutation
K+ = 1111000 0110011 0010101 0101111
0101010 1011001 1001111 0001111
Next, split this key into left and right halves,
C0 and D0, where each half has 28 bits.
C0 = 1111000 0110011 0010101 0101111
D0 = 0101010 1011001 1001111 0001111
Key generation example
we now create sixteen blocks Cn and Dn,
1<=n<=16. Each pair of blocks Cn and Dn is
formed from the previous pair Cn-1 and Dn-1,
respectively, for n = 1, 2, ..., 16, using a
“schedule of left shifts".
Round
number
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16
Bits
rotated
1
1
2
2
2
2
2
2
1
2
2
2
2
2
2
1
Key generation example
C0 = 1111000011001100101010101111
D0 = 0101010101100110011110001111
C1 = 1110000110011001010101011111
D1 = 1010101011001100111100011110
C2 = 1100001100110010101010111111
D2 = 0101010110011001111000111101
C3 = 0000110011001010101011111111
D3 = 0101011001100111100011110101
……
Key generation example
We now form the subkeys Kn, for 1<=n<=16,
by applying the table PC-2 (Permutation
Choice Two) to each of the concatenated
pairs CnDn.
For the first subkey, we have
C1D1 = 1110000 1100110 0101010 1011111
1010101 0110011 0011110 0011110
After we apply the permutation PC-2:
K1 = 000110 110000 001011 101111 111111
000111 000001 110010
Modular Arithmetic
Two integers a and b are said to be
congruent modulo n, if :
(a mod n) = (b mod n)
This is written as a≡b mod n
Define Zn as the set of nonnegative integers
less than n: Zn={0,1,…,(n-1)}
Modular Arithmetic
Properties of modular arithmetic
Modular Arithmetic
Define Zp as the set of nonnegative integers
less than a given prime number p:
Zp={0,1,…,(p-1)}
Because p is prime, all of the nonzero
integers in Zp are relatively prime to p.
There exists a multiplicative inverse for all of
the nonzero integers in Zp :
For each nonzero w in Zp, there exists a z in Zp
such that w x z ≡ 1 mod p. z is called the
multiplicative inverse of w. Or, z = w-1.
Number Theory
Fermat’s Little Theorem:
ap-1 ≡ 1 mod p
where p is prime and gcd(a,p)=1
E.g.
a = 7, p = 19
72=49≡11 mod 19
74≡121≡7 mod 19
78≡49≡11 mod 19
716≡121≡7 mod 19
ap-1=718=716x72≡7x11=77≡1 mod 19
Number Theory
An alternative form of Fermat’s Little
Theorem:
ap ≡ a mod p
where p is prime and a is any positive integer
E.g.
p=5,a=3,35=243≡3 mod 5
p=5,a=10,105=100000≡10 mod 5≡0
Number Theory
Euler’s Totient Function ø(n)
For prime number p,
The number of positive integers less than n and
relatively prime to n
ø(n)= p – 1
For n = pq where p and q are two different
prime numbers
ø(n)= (p – 1) (q – 1)
Number Theory
Example: ø(21)
From 1 to 21, totally 21 numbers
21 = 3x7, 3 and 7 are prime
3’s multiples:
7’s multiples:
3, 6, 9, 12, 15, 18, 21
7, 14, 21
Other numbers are all relatively prime to 21
21-7-3+1 = (3-1)x(7-1)
Number Theory
Euler’s Theorem
aø(n) ≡ 1 mod n
where gcd(a,n)=1
E.g.
a=3;n=10; ø(10)=4;
hence 34 = 81 ≡ 1 mod 10
a=2;n=11; ø(11)=10;
hence 210 = 1024 ≡ 1 mod 11
Number Theory
The powers of an integer a, modulo n
a, a2, a3, … (mod n)
If a and n are relatively prime, based on Euler’s theorem, we
have aø(n) ≡ 1 mod n
a, a2, a3, … will have a repeated pattern
E.g., ø(5)=4, 3ø(5)=81≡1 mod 5
3, 4, 2, 1, 3, 4, 2, 1, …
There may exist lots of m such that am ≡ 1 mod n
The least positive exponent m such that am ≡ 1
mod n is referred to as
the order of a (mod n)
the exponent to which a belongs (mod n)
the length of the period generated by a
Number Theory
Number Theory
Primitive root
Property of primitive root
If a number’s order (mod n) is ø(n), this number is called a
primitive root of n
If a is a primitive root of n, then its powers a,a2, a3,…,
aø(n) are distinct (mod n), and are all relatively prime to n.
In particular, for a prime number p, if a is a primitive root of
p, then a,a2, a3,…, ap-1 are distinct (mod p).
From the previous table, we can see that prime number 19’s
primitive roots are 2, 3, 10, 13, 14, and 15.
RSA Example
Select primes: p=17 & q=11
Compute n = pq =17×11=187
Compute ø(n)=(p–1)(q-1)=16×10=160
Select e: gcd(e,160)=1; choose e=7
Determine d: de=1 mod 160 and d < 160
1.
2.
3.
4.
5.
•
6.
7.
d=23 since 23×7=161= 10×160+1
Publish public key KU={7,187}
Keep secret private key KR={23,17,11}
RSA Example
given message M = 88
encryption:
C = 887 mod 187 = 11
decryption:
M = 1123 mod 187 = 88
RSA Example
Fast Modular Exponentiation
To calculate 887 mod 187
881 mod 187 = 88
882 mod 187 = 7744 mod 187 = 77
884 mod 187 = 772 mod 187 = 132
887 mod 187 = 884+2+1 mod 187 = 132x77x88 mod 187 = 894,432
mod 187 = 11
To calculate 1123 mod 187
111 mod 187 = 11
112 mod 187 = 121
114 mod 187 = 14,641 mod 187 = 55
118 mod 187 = 552 mod 187 = 33
1116 mod 187 = 332 mod 187 = 154
1123 mod 187 = 1116+4+2+1 mod187 = 154x55x121x11 mod 187 =
11,273,570 mod 187 = 88
Diffie-Hellman
Key Exchange
Diffie-Hellman Key Exchange
users Alice & Bob who wish to swap keys:
agree on prime q=7 and α=5
select random secret keys:
compute public keys:
A chooses xA=3, B chooses xB=2
3
yA=5 mod 7 = 6
2
yB=5 mod 7 = 4
(Alice)
(Bob)
compute shared session key as:
Alice: KAB=
Bob: KAB=
xA
yB
x
yA B
3
mod 7 = 4 mod 7 = 1
2
mod 7 = 6 mod 7 = 1
Diffie-Hellman Key Exchange
users Alice & Bob who wish to swap keys:
agree on prime q=353 and α=3
select random secret keys:
compute public keys:
A chooses xA=97, B chooses xB=233
97
yA=3 mod 353 = 40
233
yB=3
mod 353 = 248
(Alice)
(Bob)
compute shared session key as:
Alice: KAB=
Bob: KAB=
xA
yB
x
yA B
97
mod 353 = 248 mod 353 = 160
233
mod 353 = 40
mod 353 = 160