Transcript Document
Argand diagrams: modulus,
argument and polar form
IB HL
Adrian Sparrow
www.ibmaths.com
Subscribe to www.ibmaths.com
and gain access to hundreds of
slideshows, worksheets, practice
tests and revision material.
Personal access is just $39 and
school access $99.
The Argand plane
The plane of complex numbers is known as the Argand plane.
The y-axis is the imaginary part and the x-axis is the real part.
Examples
z1 3 2i
z2 2 i
z1 z2
Draw a sketch to show
each of these:
z1 z2
2z2
z2
z1
2z2
z1
*
z1 z2 1 3i
z1
*
2z2 4 2i
z1
*
3 2i
Modulus
The modulus, z, is the length the linez.
Examples
z1 3 2i
z2 2 i
Find,
z1
z2
z1 and z2
z1 32 22 13
z2 22 12 5
Find,
z1 z 2
10
2z 2
2 5
z1
*
13
Argument
The argument of a complex number is the angle,
, made between
the line and the positive axis.
Note that:
Considerz1 4 4i
4
t an
4
argz1
4
4
Consider z2 3 3i
3
t an
3
4
3
argz2
4 4
Argument - examples 1
z1 4
z 3 3
arg z1 0
arg z3
z 2 5i
argz2
z4 4i
2
argz4
2
Argument - examples 2
1. Find the argument of the 2. Find the argument of the
complex numberw =1 3i.
complex numberz = 3 i.
2
1
1
3
2
1
1
tan
or sin
2
3
argz
3
1
or cos
tan
1
2
6
3
argw
3
Polar and Euler form
Cartesian form: z = x + yi
Polar form: z = z cos isin
The modulus of
the complex
number.
z z cos isin
can be z z cis
The Euler form of
z z cis is given as
z ze
The argument of the
complex number.
i
We will derive the Euler form of
a complex number in a later
lessons.
Cartesian to polar form
Write the complex number
z = 3+i 3 in polar form.
Draw a sketch on your Argand
diagram
2 3
3
2
3 3
12 2 3
3
z 2 3cis
6
3 1
sin
2 3 2
1. z 2 2i
3
z 2 2cis
4
2. z 2 i 2 3
Make a right angled triangle and
find the hypotenuse, modulus, and
the angle, argument.
2
Questions - write each of the
following in polar form.
6
z 4cis
3
3. z 1 3i
4. z 4 4i
2
z 2cis
3
z 4 2cis
4
Polar to cartesian form
Write the polar complex number Questions - write each of the
following in cartesian form.
z = 2cis- in cartesian form.
6
1. z = 6cis
Draw a sketch on your Argand
z 3 i 3 3
3
diagram.
3
1
2
6
Work backward using the angle .
6
1
sin
6 2
opp
sin
hyp
2. z =10cis
4
z 5 2 i 5 2
5
3. z = 4cis
6
z 2 3 2i
2
4. z =16cis
z 8 i 8 5
opp1,adj 3
z 3 i
3