Presentation Slides

Download Report

Transcript Presentation Slides

The UPS
Team 5
Team 5: Staff
► Michael
Myers
► Fernando Muñoz
► Jesus Lopez
► Adam Bitter
► Jake Koturbo
► BSEE
► BSEE
► BSEE
► BSEE
► BSEE
2
Team 5: Expertise & Experience
►
Michael Myers
►
►
Fernando Muñoz
►
►
Jesus Lopez
►
►
Adam Bitter
►
►
Jake Kotrba
►
Expertise: Power and Electromagnetics
Experience: Kimberly-Clark, General Motors
Expertise: Power, Motors
Experience: Airforce electrician
Expertise: Controls, Power
Experience: We energies, Gossen Corporation
Expertise: Controls
Experience: N/A
Expertise: Power, Motors
Experience: Chicago-Kenosha Building
Developement
3
The UPS
Power backup for small power consumption
appliances: features and functions!!!!!!
► PCs
► Space heaters
► Elaborate more
4
AC
Vac
Sensor
Jake
+
Main
Switch
Jesus
Switch
Jesus
Quick
Charger
Fernando
Trickle
Charger
Fernando
+
Battery
Fernando
Vdc
Sensor
Jake
Inverter
Mike
Load
Display
Jesus
CPU
Adam
+
+
Idc
Sensor
Jake
+
Performance Requirements
►
►
►
►
►
►
►
►
►
►
►
►
►
►
Input AC Voltage: 105-132 V
Input AC Current: max 15 A
Input AC Frequency: 60Hz +/- 3Hz
Output AC Voltage: 105-132 V
Output AC Current: max 15 A
Output AC Frequency: 60Hz +/- 3Hz
Battery Size: 12V battery
Battery Life: 1 hour
Digital Functions: User display refreshed every 1/10 sec,
monitoring and display input AC
User Interface: LEDs indicator, push pad
Power Mode: On/Off manual switch
Sensory: Current, Voltage and Frequency
Mounting: Feet
Plug: Type B
6
Standard Requirements
►
►
►
►
►
►
►
►
►
Operating Range: -15 -- 50ºC
Max Operating Relative Humidity: 95%
Operating Pressure Range: 1 atm +/- 15%
Max Storage Duration: 10 years
Energy Sources: AC, automotive battery
Source connections: AC utility and DC battery
Power Consumption: 5200 Watt hours per year
Max Volume: 40000 cm3
Max Weight: 14 kg
7
Project Plan
8
AC
Vac
Sensor
Jake
+
Main
Switch
Jesus
Switch
Jesus
Quick
Charger
Fernando
Trickle
Charger
Fernando
+
Battery
Fernando
Vdc
Sensor
Jake
+ Inverter
Mike
Load
CPU
Adam
+
+
Idc
Sensor
Jake
User
Interface
Jesus
+
Name: Michael Myers
Major: Electrical engineering
Team 5: UPS
Assignment: block 1
Block 1: Inverter
AC
Vac
Sensor
Jake
+
Charging
Switch
Jesus
Quick
Charger
Fernando
Power Source
Switch
Jesus
Trickle
Charger
Fernando
+ Inverter
Mike
Load
CPU
Adam
+
Battery
Fernando
Vdc
Sensor
Jake
Idc
Sensor
Jake
User
Interface
Jesus
+
Inverter
Once the power fluctuates outside the
boundaries a control switch will allow
the inverter power to transfer to the
circuit.
12
Power Inverter
 The
job of this inverter is to transfer 12Vdc
to 120Vac.
 This
device will always be on
 Control
flow
switch will allow inverter power to
13
Signal Table
Power Signals
Type
Direction
Voltage
Nominal
Voltage Range
Min
Max
Freq
Freq Range
Nominal
Min
Max
% V-Reg
V-Ripple
Current
Max
Max
Max
Power1 VCC +12
DCPower
Input
12.0V
10.2
13.2V
DC
0
N/A
5.00%
0.1V
18A
Power2 VCC -15V
ACPower
Output
120.0V
102V
132.0V
AC
57
63
5.00%
0.25V
15.00A
 Analog
and digital interfacing – N/A
14
Prototyping Plan
Block
Name
Block Area
(cm2)
Total PCB
Area (cm2)
PCB
Substrate
Type
Comp
Attachment
Type
Socketed
Components
Types of
Connectors
Inverter
700
700
Fiber Glass
Solder
Yes
Flat Pins
15
DFM
Sub Circuit
Type
Applicable Worst Case Analysis Plan
(See DFM Analysis Guide)
Task
Task 1
Task 2
Task 3
Task 4
Task 5
Task 6
Task 7
Task 8
Task 9
Task 10
Timer IC
R, L & C
Tol
RLC Specs
Gain vs
Freq
Phase vs
Freq
Slewrate
BW
Step Resp
Input
Impedance
Output
Impedance
DC Offset V
Total
Noise
Wave formation
Max Offset
Voltage
DC Gain vs
Component
Variations
DC Gain
vs
Component
Variations
Gain vs
Freq vs
Comp Var
Phase vs Freq
vs Comp Var
Slewrate
Power
Bandwidth
Pulse
Response &
Delay
Input
Impedance
Smoother
R, L & C
Tol
RLC Specs
Gain vs
Freq
Phase vs
Freq
Slewrate
BW
Step
Responce
Input
Impedance
Output
Impedance
DC Offset V
Total
Noise
Transformer
Nominal
Value or
Max Value
Adjustment
Range,
%/Turn
Tolerance
Around
Nominal
Derated
Power
Capacity
Maximum
Working
Voltage
Maximum
Constant
Current
Maximum
Surge Current
Composition
Dielectric or
Form
Q Factor or
Frequency
Variation
Package
16
Inverter Block Diagram
Timing Unit
57-63 HZ
Transistor
switching
Transformer
Out to Load
DC input
12-15 VDC
17
Schematic Diagram
18
Functionality Simulation
Supposed to be -12<=V<=12 before
Transformed to -120<V<120
120V
80V
40V
-0V
-40V
-80V
-120V
0s
10ms
20ms
30ms
40ms
50ms
60ms
70ms
80ms
90ms
100ms
V(V1:+)
Time
Due to Pspice limitations, a worst
Case scenario was not able to be
Obtained.
This is the desired output not
Yet achieved
19
Bill of Materials
Part
Part #
Quantity
Description
Price
Source
R1
311-10.0KFCT-ND
1
10k Resistor, ±.1%, .25W
0.88
Digikey
R2
311-100KFCT-ND
1
100k Resistor, ±.1%, .25W
0.88
Digikey
R3
311-100FCT-ND
1
100 ohm Resistor, ±.1%, .25W
0.88
Digikey
R4
4LG54BK-ND
1
50k potentiometer, ±25%, .3W
0.59
Digikey
C1, C2
493-1329-ND
1
0.1 uF Capacitor, ±10%
0.26
Digikey
C3
493-1329-ND
1
0.01 uF Capacitor, ±10%
0.54
Digikey
C4
P11706-ND
1
2700 uF Capacitor,±10%
6.37
Digikey
Q1
497-2622-5-ND
1
TIP41A, NPN Resistor, 100V
0.95
Digikey
Q2
497-2552-5-ND
1
TIP42A, PNP Resistor, -100V
1.04
Digikey
L1
5300-01-ND
1
1uH, ±15%
0.67
Digikey
T1
273-1511
1
Transformer 1/10
10.49
Radio Shack
20
Name: Fernando Muñoz
Major: Electrical engineering
Team 5: UPS
Assignment: Power Block
Block 2a: Charger (Rectifier)
Block 2b: Battery
Vac
Sensor
Jake
+
Charging
Switch
Quick
Charger
Fernando
Power Source
Switch
Trickle
Charger
Fernando
+ Inverter
Mike
Load
CPU
Adam
+
Battery
Fernando
Vdc
Sensor
Jake
User
Interface
Jesus
+
Idc
Sensor
Jake
22
Main Purpose
 Keep
a constant charge in the battery so
when commercial power is lost, the device
to which the UPS is connected to stays on
for about a half hour or until the battery
drains completely.
 Provide 5 VDC logic to the CPU which power
s all essential controls and sensors.
23
Power Inputs and Outputs
 Transformer
Input : 120 VAC / 20Amp
 Transformer
Output / Rectifier Input :
15.7 VAC (Step Down)
 Rectifier
Output #1 : 14.3 VDC
 Rectifier
Output #2 : 5 VDC
24
Power Electrical Interface Signals
Power Signals
Type
Direction
Voltage
Voltage Range
Nominal
Min
Max
Freq
Freq Range
Nominal
Min
Max
% V-Reg
V-Ripple
Current
Max
Max
Max
Power-1 AC Input
AC Power
Input
120V
102V
132V
60Hz
57Hz
63Hz
15.00%
N/A
15A
Power-2 VCC
+14.3V
DC Power
Output
14.3V
12.15V
15.73V
DC
0
N/A
1.00%
0.01V
35A
Power-3 VCC
+14.3V
DC Power
Output
14.3V
12.15V
15.73V
DC
0
N/A
1.00%
0.01V
2A
25
Block diagram of Power Supply
System
120 VAC
Main Input
Transformer
Rectification
15.7 VAC
Smoothing
14.3 VDC
Regulation
14.3 / 5 VDC
Regulated
output
14.3 VDC
With
Ripple
26
5 VDC Power Regulated System
27
Prototyping Plan
Block
Name
Power
Block Area
(cm2)
700
Total PCB
Area (cm2)
700
PCB
Substrate
Type
Copper
Comp
Attachment
Type
Solder
Socketed
Components
Types of
Connectors
No
B type plug
Flat Pins
28
Functionality Simulations
29
Transient Response
200V
0V
-200V
0s
V(120AC:+)
10ms
20ms
( V(VA)- V(VB))
30ms
40ms
50ms
60ms
Time
30
Maximum WV for Capacitors
► Referencing
to the manufacturer (Digikey)
specification the following value was chosen
as WV.
 470uF Capacitor:
► WV
: 10VDC
► Leakage Current: 235uA
► Ripple Current: 570mA
► Dimensions: 32(L)*10.3(D)*0.8(d) mm
31
Power Ratings
 Diodes:
P = V*I
P = (16V)*(2A) = 32W
 Resistors:
They were only placed in Pspice
simulation in order to have the transformer
work properly and give accurate results.
32
Capacitor Tolerance
This Solid Axial 470uF
Capacitor has a range
of small long life
(20000H).
 Tolerance±20% and
±10% on request
 Usable Temperature
range:-80oC to
+125oC

33
Off Board Connectors
► Battery
Post: To achieve a mechanically
secure and tight connection we’ll be using
adjustable clamps.
► Transformer: It will be sitting on a hard
surface at the bottom of the UPS, we’ll use
flat pin connectors to connect wires going to
the rectifier.
► DC to DC Connector: Flat pin connectors.
34
Charge Type
 Trickle
Charge : Constantly supplies the
battery with 14.3 VDC at 2 Amps.
 Logic Charge : Constant +5 VDC
converted from the 12 VDC coming out of
the battery, this will power CPU, sensors
and interface.
35
Bill of Materials
Part
Part #
Quantity
Description
Price
Source
C1
4278PHCT-ND
1
470 uF Capacitor
4.49
Digikey
C2,C3
4931829-ND
1
0.1 uF Capacitor
0.54
Digikey
Conv.
179-1011-ND
1
DC to DC Converter
71.5
Digikey
Diode
1N4001
1
Bridge Rectifier
1.6
Maplin
VDC
P174-ND
1
Lead Acid Battery
34.56
Digikey
T1
DCT-10-120
1
Transformer 120/16
56
Grainger
36
Name: Jesus Lopez
Major: Electrical engineering
Team 5: UPS
Assignment: blocks 3 and 4
Block 3: Switching Gear
Block 4: Display
Switching Gear
The switching for this project will be
effectuated by a solid state relay.
► Main
switch.
► Charging switch.
Note: other switches may be needed for different.
Blocks.
38
AC
Vac
Sensor
Jake
+
Charging
Switch
Jesus
Quick
Charger
Fernando
Main
Switch
Jesus
Trickle
Charger
Fernando
+ Inverter
Mike
Load
CPU
Adam
+
Battery
Fernando
Vdc
Sensor
Jake
Idc
Sensor
Jake
User
Interface
Jesus
+
Switching Gear Sub-Blocks
► Main
Switch
► Charging
Switch
Note: switch elimination
40
From the Utility
Main
Switch
To the load
From the inverter
From the utility
Charging
Switch
To the rectifier
41
Main Switch
 Selects
 CPU
utility or battery.
control.
42
Main Switch Nominal Ratings
Control Input : 6 Vdc
Input:
120 Vac
Output:
25 A
43
Charging Switch

Battery Charging

CPU control
44
Switch Nominal Ratings
Control Input : 5 Vdc
Input:
120 Vac
Output:
30 A
45
Main Switch Signal Table
Voltage Range
Power Signals
Type
Direction
Freq Range
Voltage
Nominal
Min
Max
Freq
Nominal
Min
Max
% V-Reg
Max
V-Ripple
Max
Current
Max
Power1 DC +5
DC Power
Input
5.0V
4.75V
5.25V
0
0
0
5.00%
0.1V
1.2A
Power1 AC
AC Power
Input
120V
102V
132V
60Hz
57Hz
63Hz
15.00%
N/A
1.0A
Power2 AC
AC Power
Output
120V
102V
132V
60Hz
57Hz
63Hz
15.00%
N/A
1.0A
Power3 AC
AC Power
Input
120V
102V
132V
60Hz
57Hz
63Hz
15.00%
N/A
1.0A
46
Charging Switch Signal Table
Voltage Range
Power Signals
Type
Direction
Freq Range
Voltage
Nominal
Min
Max
Freq
Nominal
Min
Max
% V-Reg
Max
V-Ripple
Max
Current
Max
Power1 VCC +5
DC Power
Input
5.0V
4.75V
5.25V
0
0
0
5.00%
0.1V
1.2A
Power2 AC
AC Power
Input
120V
102V
132V
60Hz
57Hz
63Hz
15.00%
N/A
1.0A
Power3 AC
AC Power
Input
120V
102V
132V
60Hz
57Hz
63Hz
15.00%
N/A
1.0A
47
Switching Key Components
► SPDT
switch
► SPST
switch
Note: zero cross switch application &
phase lock loop
48
Switches Bill of Materials
Item
Package Units
Power
Price $ Vendor
Consumption
Switch
Relay
1
27mW
34.00
Digikey
Switch
Relay
N/A
27mW
34.00
Digikey
49
Switching Gear DFM Plan
Main Switch
Sub-Block
Type
Input Type
Max input
Voltage
Min Input
Voltage
Power
Consumption
Relay
AC: Output
DC: Control Input
Output:
132 V
Control Input:
6.5 V
Output:
102 V
Control
Input: 3.5 V
17 mW
50
Display
Features:





On/Off manual power switch.
On/Off LEDs.
AC/DC LEDs.
Fast/Slow charging mode LEDs.
Remaining power LED array indicator.
51
AC
Vac
Sensor
Jake
+
Charging
Switch
Quick
Charger
Fernando
Power Source
Switch
Trickle
Charger
Fernando
+ Inverter
Mike
Load
Display
Jesus
CPU
Adam
+
Battery
Fernando
Vdc
Sensor
Jake
Idc
Sensor
Jake
+
Display Sub-Blocks
 Remaining power LED bar indicator
 UPS status LEDs
On/Off Switch
Manual Input
Power
On/Off Switch
To the battery
terminal
From the CPU
LED Bar
From the CPU
Status LEDs
54
Display Signal Table
Voltage Range
Power Signals
Type
Direction
Freq Range
Voltage
Nominal
Min
Max
Freq
Nominal
Min
Max
% V-Reg
Max
V-Ripple
Max
Current
Max
Power1 VCC +5
(switch)
DC Power
Input
5.0V
4.75V
5.25V
DC
0
N/A
5.00%
0.1V
1.2A
8-bit channel
Digital
Input
5.0V
4.75V
5.25V
DC
0
N/A
5.00%
0.1V
1.2A
55
Display Key Components
► LED
Bar Graph Arrays
► Manual Switch
► LEDs
56
Display Bill of Materials
Item
Package Units
Power
Price $ Vendor
Consumption
LED bar
graph array
Chip
1
750 mW
2.10
DigiKey
LEDs
N/A
4
300mW
2.00
DigiKey
On/Off
switch
N/A
1
Minimal
Resistance
1.50
DigiKey
57
Display DFM Plan
Display
Sub-Block Type
Input
Type
Max input Min Input
Power
Voltage
Voltage
Consumption
Remaining Power
LED Chip
DC
6.0 V
3.5 V
750 mW
Status LEDs
Indicators
DC
6.0 V
3.5 V
300 mW
On/Off Switch
Manual
N/A
N/A
N/A
58
End of UPS blocks 3 and 4
!!!
59
Name: Adam Bitter
Major: Electrical engineering
Team 5: UPS
Assignment: CPU
AC
Vac
Sensor
Jake
+
Charging
Switch
Quick
Charger
Fernando
Power Source
Switch
Trickle
Charger
Fernando
+ Inverter
Mike
Load
CPU
Adam
+
Battery
Fernando
Vdc
Sensor
Jake
Idc
Sensor
Jake
User
Interface
Jesus
+
CPU
The CPU will do the following things:
• Read in a utility (AC) voltage signal
• Read in a battery voltage signal
• Control the switching of the power source
switch
• Control the switching of the charging switch
• Output a battery life signal to the display
62
CPU
The CPU will switch to the battery
when the voltage read in is below
105 V
When the battery is run dead the
CPU will switch on the fast charger
for a certain period of time
63
CPU
The CPU will send a signal to the display indicating
the life of the battery based on the battery voltage
level
 If necessary it will also be able to send more
outputs to the display

64
Sensor Signals
►8
bits = 28 = 256 values
► Vac range = 0 – 132V
► 132/256 approx = .5V per bit
► Vdc range = 0 – 14.3V
► 14.3/256 approx = 50mV per bit
65
Vac Sensor Input
► Digital
Input
► 8 bits of input at 5V
► Approx .5V per bit
► UPS switched on when input is less than
105V = 11010010
66
Vdc Sensor Input
► Digital
Input
► 8 bits of input at 5V
► Approx 50mV per bit
67
Display Output
► Digital
Output
► 8 bits of output at 5V
► Display is LED’s
► 8 levels of battery life
► 11111111 is fully charged battery
► 00000000 is dead battery
68
Lattice M4 64/32 15JC
69
CPU
Dig
Device
CPU
Outpu
t
Type
Std
Input
Type
Std
DC Drive Device Parameters
Tech
Type
CMOS
Vil
max
Vih
min
Iil (-)
Max
Iih
max
Vol
max
Voh
min
Iol
max
Ioh (-)
Min
Vhyst
0.8V
2.0
V
0.2
uA
0.2u
A
0.6V
4.3V
4.6m
A
-2mA
N/A
Checked
70
CPU Timing
► Min
Clock Setup Time:
► Min Clock Hold Time:
► Min Input Register Setup Time:
► Min Input Register Hold Time:
► Min Input Latch Setup Time:
► Min Input Latch Hold Time:
► Max Output Enable Time:
► Max Output Disable Time
5ns
3.5ns
2ns
3ns
2ns
3ns
9.5ns
9.5ns
71
CPU Prototype Plan
Block
Name
Block Area
(cm2)
Total PCB
Area
(cm2)
PCB
Substrate
Type
Comp
Attachment
Type
Socketed
Componen
ts
Types of
Connector
s
CPU
100
12
Copper
solder
Yes
Ribbon
Cable
72
CPU Signals
Digital Signals
Vaci 8-bits
Vdc 8-bits
Idc 8-bits
Switch 1-bit
Battery 8-bits
Power 2-bits
Type
Digital
Digital
Digital
Digital
Digital
Digital
Dir
Output
Input
Freq
Logic
Input Characteristics
Output Characteristics
Structure Structure Nominal Voltage Vih Min Iih Max ViL Max IiL Max Voh Min Ioh Max VoL Max IoL Max
Input N/A
Input N/A
Input N/A
Output N/A
Output N/A
Output N/A
Standard
Standard
Standard
Standard
Standard
Standard
2.0Mhz
2.0Mhz
2.0Mhz
2.0Mhz
2.0Mhz
2.0Mhz
5V
5V
5V
5V
5V
5V
2.0V
2.0V
2.0V
N/A
N/A
N/A
400uA
400uA
400uA
N/A
N/A
N/A
0.8V
0.8V
0.8V
N/A
N/A
N/A
-1.2mA
-10uA
-1.2mA
N/A
N/A
N/A
N/A
N/A
N/A
5.25V
5.25V
5.25V
N/A
N/A
N/A
2mA
2mA
2mA
N/A
N/A
N/A
4.75V
4.75V
4.75V
N/A
N/A
N/A
1mA
1ma
1ma
73
CPU Power
Power Signals
Power1 VCC +5
Type Direction Voltage
Nominal
DC PowerInput
5.0V
Voltage Range Freq
Freq Range % V-Reg V-Ripple Current
Min
Max Nominal Min
Max
Max
Max Max
4.75V 5.25V DC
0
N/A
5.00%
0.1V
1.3A
74
Pseudo Code
Start:
Read in Vac
if Vac < 11010010
switch on power switch
if power switch on
if Vac > 11010010
switch off power switch
Read in Vdc
output Vdc to display
if Vdc < Dead Battery
switch on fast charger for 1 hour
Loop Start
75
CPU Signals
Input:
AC voltage:
DC voltage:
8 bits, 5V DC
8 bits, 5V DC
Output:
Display:
8 bits, 5V DC
Charging Switch: 1 bit, 5V DC
Power Switch:
1 bit, 5V DC
76
Name: Jake Koturbo
Assignment: block 6
Block 6: Sensors
Purpose:
It’s how the CPU interfaces with the input and
output power.
78
Advantages of Using Sensors
► Upper
and lower limit can be adjusted with
a small change in the CPU’s programming.
► Provide accurate user interface read-outs
79
Sensor Performance Requirements
Input: Analog (nominal)
► 120Vac
► 5Vdc
Output: Digital (nominal)
► 8-bits (5V logic)
80
Output continued…
► Directly
interface with only the CPU
► All
sensor outputs will supply the eight bit
signal to the CPU.
► All
sensors will use A/D converters and
therefore use 5volt.
81
The reason for 8-bits
►28
= 256 partitions
►132V
divided by 256 gives us a
measuring accuracy of about 0.5V
82
Sensor Standard Requirements
Operating Voltage:
► Max 5.25Vdc
► Min 4.75Vdc
Operating Temperature:
► Max 50 C
► Min -15 C
Humidity:
► Max 95% r.h.
83
AC
Vac
Sensor
Jake
+
Charging
Switch
Quick
Charger
Fernando
Power Source
Switch
Trickle
Charger
Fernando
+ Inverter
Mike
Load
CPU
Adam
+
Battery
Fernando
Vdc
Sensor
Jake
Idc
Sensor
Jake
User
Interface
Jesus
+
Sensor Power Interface
Type
DC
Power
Direction
Input
Voltage
Nominal
5.0V
Voltage Range
Min
Max
4.75V
5.25V
Frequency
Nominal
0
Frequency Range
Min
Max
0
0
% VReg.
VRipple
Current
5%
0.2V
0.5A
85
Sensor Analog Interface
Analog
Signal
Type
Direction
Coupling
Voltage
Amplitude
Maximium
Impedence
Frequency Range
Min
Max
Min
Max
Leakage
Max
Vac
Analog
Input
Xfmr
132V
5k
20k
0
63Hz
500uA
Vdc
Analog
Input
Xfmr
14.3V
5k
20k
0
1Hz
500uA
Idc
Analog
Input
Xfmr
5.25V
5k
20k
0
1Hz
500uA
86
Sensor Digital Interface
Digital
Signals
Type
Direction
Input
Structure
Technology
Logic
Voltage
Output Characteristics
Voh Min
Ioh Max
Vol Max
Iol Min
Vac 8-bits
Digital
Output
Standard
TTL
5V
3.25V
0.5mA
1.8V
0.1mA
Vdc 8-bits
Digital
Output
Standard
TTL
5V
3.25V
0.5mA
1.8V
0.1mA
Idc 8-bits
Digital
Output
Standard
TTL
5V
3.25V
0.5mA
1.8V
0.1mA
87
Simplified Sensor
Analog
Signal
Convert to
a
proportion
al 0-5Vdc
analog
signal
CPU
ADC
Vcc~5V
88
Vac Sensor
► Measure
the input voltage from the
commercial supply.
► Produce
an eight bit output.
► Signal
is monitored by the CPU to initilize
the use of the inverter.
89
Placement of the Vac Sensor
AC power
Vac Sensor
AC power
CPU
90
Basic Schematic Layout
91
Because of the large
voltage capabilities of the
bridge rectifier, no stepdown transformer is needed
Basic Schematic Layout
Without the transformer
Calculations for the Vac Sensor
► If
Rtotal = R1 + R2 and resistors are .25W
► I=P/Vmax, I = 0.25W/132V = 2.08mA
► Rtotal
= 132V/2.08mA = 122k
► R2 = 5*122k/132 = 4.6k
► R1 = Rtotal – R2 = 117.4k
94
95
120V
Transient Analysis
80V
40V
0V
0s
V(R2:1)
10ms
V(Vrec)
20ms
30ms
40ms
50ms
60ms
Time
96
120V
DC Sweep
80V
40V
0V
0V
20V
V(R2:1) V(Vrec)
40V
60V
80V
V_Vutility
100V
120V
140V
97
Major Components
► Bridge
Rectifier
► Resistors
► Capacitor
► Analog to Digital Converter
98
Vdc Sensor
► Measure
the battery voltage.
► Produce
an eight bit output directed to the
CPU.
► Used
to determine emergency CPU
shutdown (when battery runs too low).
► Used
in conjunction with the Idc sensor to
estimate battery expectancy.
99
Placement of the Vdc Sensor
Quick
Charger
Trickle
Charger
Inverter
Vdc and Idc
Sensors
Battery
100
101
Calculations for the Vdc Sensor
► If
Rtotal = R1 + R2 and resistors are .25W
► I=P/Vmax, I = 0.25W/15.7V = 15.9mA
► That’s too much current, Use I = 500uA
► Rtotal
= 15.7V/500uA = 31.4k
► R2 = 5*31.4k/15.7 = 10k
► R1 = Rtotal – R2 = 21.4k
102
103
8.0V
4.0V
0V
0V
4V
8V
12V
16V
20V
V(R2:2)
V_Vbattery
104
Major Components
► Resistors
► Analog
to Digital Converter
105
The ADC is in both sensors
► It’s
the major major component
106
Comparison between
CPU and ADC
ADC output
CPU input
Vlow(max)
0.4V
0.8V
Vhigh(min)
2.4V
2.0V
Ilow(max)
1.6mA
N/A
Ihigh(min)
-360uA
N/A
Limits fall within acceptable range
Further Comparison between CPU
and ADC
► ADC
Conversion time 103us – 114us
► CPU
 Setup time = 6ns
 Hold time = 0ns
 Total time required for latch => 6ns
►?
108
109
110
Bill of Materials
►
Resistors
 4.64k Ω ±1%
 118k Ω ±1%
 10k Ω ±1%
 21.5k Ω ±1%
►
►
Rated: 0.25W
200V working max
111
B.O.M. continued…
► Capacitor
 470uF±20%
 WV = 10V
 Voltage range 6V-200V
112
B.O.M. continued…
► Bridge




Rectifier
Imax = 1A
50V < Vrated < 1000V
50Hz < operating frequency < 1kHz
1Vmax, drop per diode
113
B.O.M. continued…
►
Analog to Digital Converters (ADC)

Vcc supply = 5V ± 0.25V

Clock frequency: 100kHz – 1460kHZ
Output
High:
2.4Vmin
-360uA
Low:
0.4Vmax
1.6mA
Input
1.
0-5V range
2.
1uA max
114
B.O.M. continued…
► 8-
Conductor Ribbon (6’’ long)
 300Vmax
 26AWG stranded
115
Block Prototyping Plan Template
Block
Name
Block Area
(cm2)
Total PCB
Area
(cm2)
PCB
Comp
Substrate Attachment
Type
Type
Socketed
Components
Types of
Connectors
Sensors
120
700
Fiber Glass
N/A
Spade
connector,
Cupper bus,
easy
disconnect
Wire Wrap
116
Compiled B.O.M.
Part
Part #
Quantity
Description
Price (1)
Source
R1
MFR-25FBF4K64
1
4.64k Resistor
0.11
Digikey
R2
MFR-25FRF118K
1
118k Resistor
0.11
Digikey
R3
MFR-25FBF10K0
1
10k Resistor
0.11
Digikey
R4
MFR-25FBF21K5
1
21.5k Resistor
0.11
Digikey
C1
4173PHBKND
1
470uF Capacitor
3.01
Digikey
117
Compiled B.O.M. cont…
Part
Part #
Quantity
Description
Price (1)
Source
3.00
Iguana Labs
ADC
ADC0804
2
Analog-to-Digital
Conv.
D
497-2622-5ND
1
Bridge Rectifier
?
?
Ribbon
WM08-06-ND
2
Ribbon
1.08
Digikey
PCB
3.00
4
spade connectors
(m&f pairs)
2.50
Chester's
4
Ribbon
Connectors(m
&f pairs)
5.10
Chester's
PCB
Con1
Con2
1
Chester's
118
Compiled B.O.M. cont…
► Approximately
$25 without the bridge
rectifier
► Original Material Estimate: $126
 Well under bid
► Original
Estimated Hours 50 hrs.
 Quickly approching
119
Bill of Materials
Part
Part #
Quantity
Description
Price (1)
Source
R1
311-4.6KFCT-ND
1
4.6k Resistor
0.88
Digikey
R2
311-120KFCT-ND
1
120k Resistor
0.88
Digikey
R3
311-10kFCT-ND
1
10k ohm Resistor
0.88
Digikey
R4
4LG22K-ND
1
22k potentiometer
0.59
Digikey
C1
4173PHBK-ND
1
470uF Capacitor
3.01
Digikey
ADC
ADC0804
2
Analog-to-Digital Conv.
3.00
IguanaLabs
D
497-2622-5-ND
2
Bridge Rectifier
?
120
121
Chronological Disparities
Can’t begin to construct prototype until all parts have
been obtained.
Can’t obtain all parts until part list has been compiled.
Can’t test the whole project as a hole until everyone gets
their blocks put together and debugged.
Can’t test the whole project until all safety standards and
regulations have been met.
Prototype UPS Shelf
123