Transcript Santiard
ANALOG AND DIGITAL PROCESSING FOR THE
READOUT OF RADIATION DETECTORS
J.C. Santiard, CERN, Geneva, CH ([email protected])
K. Marent, IMEC vzw, 3001 Leuven, BE ([email protected])
H. Witters, IMEC vzw, 3001 Leuven, BE ([email protected])
J. Hauser, CMS UCLA
Sh. Chandramouly, CMS UCLA
J.C Santiard CERN EP-MIC
CERN EP-MIC LONG P.T. ANALOG
FRONT-END DEVELOPMENT
Long peaking-time(.5 s; 1.2 s) used as
delay, waiting for a trigger to memorize on
cap. by T/H; multiplexed output.
General use
1987 AMPLEX 3m tech. 60 wafers
1990 AMPLEX-SICAL 3m tech. 100 wafers
Gaseous detectors
1993 GASPLEX 1.5m tech. 10 wafers
1994 GASSIPLEX1.5 1.5m tech. (Si) 60 wafers
1998 GASSIPLEX0.7 0.7m tech. (Si) Proto.
J.C Santiard CERN EP-MIC
SIGNAL PROCESSING FOR GASEOUS
DETECTORS
Ions drift time of several
tens of s from anode to
cathode:
i(t) = I0B/(1 + t/t0)
q(t) = Q0ALn (1 + t/t0)
A, B and t0 are
constants depending
on detector geometry
and electric field.
Filtering adaptable to
any kind of drift time
J.C Santiard CERN EP-MIC
CONTINUOUS TIME DECONVOLUTION
FILTER
GOAL: RECREATE A STEP FUNCTION FROM THE
LOGARITHMIC SHAPE OF THE CHARGE OR A DIRAC
PULSE FROM THE CURRENT SIGNAL.
Impulse response of detector model with Dirac input:
h(t) = U(t)/(t0+t)
U(t) is a step function
function of the deconvolver G(s) should be:
G(s) = H(s)-1
H(s) = L[ h(t) ]
3 exponentials in the feedback of a summing amplifier:
G(s) = Vout/Vin = A/(1 + A) ; if A>>, G(s) ~ 1/
J.C Santiard CERN EP-MIC
PRACTICAL IMPLEMENTATION
3 weighted exponential:
= K1/(1 + sT1) + K2/(1 + sT2) +
K3/(1 + sT3)
Gain factors:
K1 = 0.2; K2 = 0.3; K3 = 0.5
Time constants:
T1 = C1/gm1 ; T2 = C2/gm2 ;
T3 = C3/gm3
J.C Santiard CERN EP-MIC
ACTIVE FEEDBACK RESISTOR
Rf = 20 M
J.C Santiard CERN EP-MIC
POLE/ZERO CANCEL. RESISTOR
Rp/z = 2.2 M
J.C Santiard CERN EP-MIC
SHAPER
NO DIFFERENTIATING CAPACITOR
J.C Santiard CERN EP-MIC
SIMULATIONS RESULTS
CSA OUTPUT
FILTER OUTPUT
SHAPER OUTPUT
J.C Santiard CERN EP-MIC
LAYOUT
J.C Santiard CERN EP-MIC
MEASUREMENTS
NOISE Vs Cin
GAIN SPREAD
40
30
1800
1600
1400
1200
1000
800
600
400
200
0
Channels
y = 11.262x + 470.16
25
20
15
10
5
Cin
mv/fC
J.C Santiard CERN EP-MIC
3.
8
3.
75
100
3.
7
50
3.
65
0
3.
6
0
3.
5
e- rms
35
LINEARITY
2000
3
y = 3.5329x + 5.2869
2
OUT errors fC
OUT mv
1500
1000
500
1
0
-1
0
200
400
-2
0
0
200
400
600
-3
IN fC
IN fC
J.C Santiard CERN EP-MIC
600
7
6
5
4
3
2
1
0
4.4
4.2
Gain (mV/fC)
OUT fC
CALIBRATION
4
3.8
3.6
3.4
3.2
3
0
5
10
15
0
5
10
Channel Number
CHANNEL
J.C Santiard CERN EP-MIC
15
SHAPING ON GASEOUS DETECTOR
PAD WITH 55Fe Xray SOURCE
J.C Santiard CERN EP-MIC
TABLE OF RESULTS(1)
Technology
Silicon area
Silicon detector mode
Gain
Dynamic range ( + )
Dynamic range ( - )
Non linearity
Noise at 0 pF
Noise slope
Low power mode
Power consumption
Noise at 0 pF
Noise slope
MIETEC-0.7m
3.63 x 4 = 14.5 mm2
2.2 mV/fC
900 fC ( 0 to 2 V)
500 fC ( 0 to -1.1 V)
3 fC
600 e- rms
12 e- rms/pF
4mW/chan. at 4 MHz
600 e- rms
15 e- rms/pF
J.C Santiard CERN EP-MIC
TABLE OF RESULTS(2)
Gaseous detector mode
Peaking time
Peaking time adjust.
Noise at 0 pF
Noise slope
Dynamic range ( + )
Dynamic range ( - )
Gain
Non linearity
Baseline recovery
Analog readout speed
Power consumption
Out. Temp. coeff.
1.2 s
1.1 to 1.3 s
530 e- rms
11.2 e- rms/pF
560 fC ( 0 to 2 V )
300 fC ( 0 to -1.1 V )
3.6 mV/fC
2 fC
.5% after 5 s
10MHz (50 pF load)
8mW/chan. at 10 MHz
0.05 mV/0C
J.C Santiard CERN EP-MIC
BLOCK DIAGRAM
J.C Santiard CERN EP-MIC
DILOGIC2: A SPARSE DATA SCAN
READOUT PROCESSOR
CHARACTERISTICS:
16 TO 64 CHANNELS
PED. SUBTRACTION
ZERO SUPPRESSION
512X18 BITS DATA FIFO
64X16 BITS BITMAP
FIFO
4 BITS CONTROLLER
ASYNCHRONOUS R/W
FIFO FLAGS
PROTOTYPES
DELIVERY: OCT. 99
J.C Santiard CERN EP-MIC
16-Ch. LCT-COMP
USE ON THE CSC ENDCAP
MUON DETECTORS IN CMS TO
LOCALIZE THE TRACK HIT
POSITION TO 1/2 STRIP.
COMPARATORS HAVE LOW
OFFSET SPREAD: <.9mv rms.
SPATIAL RESOLUTION
DEPEND MAINLY ON THE
INPUT NOISE LEVEL.
ON-CHAMBER TESTING WILL
BE DONE DURING SUM. 00
PRE-PRODUCTION WILL
START IN MARCH 00
J.C Santiard CERN EP-MIC