Operational Amplifiers
Download
Report
Transcript Operational Amplifiers
Operational Amplifiers
Supplemental lecture
Rick Matthews
The inverting amplifier
• R2 provides negative
feedback.
The inverting amplifier
• R2 provides negative
feedback.
• This means V- is
adjusted to V+.
The inverting amplifier
• R2 provides negative
feedback.
• This means V- is
adjusted to V+.
• V+ is zero, so V- must
be zero, too.
The inverting amplifier
• R2 provides negative
feedback.
• This means V- is
adjusted to V+.
• V+ is zero, so V- is
zero.
I Vin / R1
Vout
R2
IR2 Vin
R1
I
The inverting amplifier
• R2 provides negative
feedback.
• This means V- is
adjusted to V+.
• V+ is zero, so V- is
zero.
I Vin / R1
Vout
R2
IR2 Vin
R1
I
The inverting amplifier
• R2 provides negative
feedback.
• This means V- is
adjusted to V+.
• V+ is zero, so V- is
zero.
I Vin / R1
Vout
R2
IR2 Vin
R1
I
More generally,…
More generally,…
• Whatever sits in the
place of R1 serves to
create a current I that
is a function of Vin.
I=f(Vin)
More generally,…
• Whatever sits in the
place of R1 serves to
create a current I that
is a function of Vin.
• And whatever sits in
place of R2 serves to
create a voltage Vout
that is a second
function of I.
Vout= -g(I)
I=f(Vin)
More generally,…
• Whatever sits in the
place of R1 serves to
create a current I that
is a function of Vin.
• And whatever sits in
place of R2 serves to
create a voltage Vout
that is a second
function of I.
Vout g f (Vin )
Vout= -g(I)
I=f(Vin)
Example
Vin
I Vin / R1 , so f (Vin ) .
R1
VR2 IR2 , so g ( I ) IR2 .
Vout
R2
g f (Vin ) Vin .
R1
Example
Vin
I Vin / R1 , so f (Vin ) .
R1
VR2 IR2 , so g ( I ) IR2 .
Vout
R2
g f (Vin ) Vin .
R1
Example
Vin
I Vin / R1 , so f (Vin ) .
R1
VR2 IR2 , so g ( I ) IR2 .
Vout
R2
g f (Vin ) Vin .
R1
Example: Exponentiating amp
eV
I I o exp
kT
1 ,
eV
so f (Vin ) I o exp
kT
VR IR, so g ( I ) IR.
Vout
1 .
eVin
g f (Vin ) I o R exp
1
kT
eVin
I o R exp
.
kT
Example: Exponentiating amp
eV
I I o exp
kT
1 ,
eV
so f (Vin ) I o exp
kT
VR IR, so g ( I ) IR.
Vout
1 .
eVin
g f (Vin ) I o R exp
1
kT
eVin
I o R exp
.
kT
Example: Exponentiating amp
eV
I I o exp
kT
1 ,
eV
so f (Vin ) I o exp
kT
VR IR, so g ( I ) IR.
Vout
1 .
eVin
g f (Vin ) I o R exp
1
kT
eVin
I o R exp
.
kT
Example: Exponentiating amp
eV
I I o exp
kT
1 ,
eV
so f (Vin ) I o exp
kT
VR2 IR, so g ( I ) IR.
Vout
1 .
eVin
g f (Vin ) I o R exp
1
kT
eVin
I o R exp
.
kT
Example: Exponentiating amp
eV
I I o exp
kT
1 ,
eV
so f (Vin ) I o exp
kT
VR IR, so g ( I ) IR.
Vout
1 .
eVin
g f (Vin ) I o R exp
1
kT
eVin
I o R exp
.
kT
Example:
log
amp
Box 1 is the resistor.
Vin
Vin
I
, so f (Vin ) .
R
R
Box 2 is the diode.
eV
I I o exp
kT
1
I
kT
V
log 1
e
Io
I
kT
log .
e
Io
I
kT
g (I )
log .
e
Io
Therefore,
Vout g f (Vin )
V
kT
log in .
e
Io R
Example:
log
amp
Box 1 is the resistor.
Vin
Vin
I
, so f (Vin ) .
R
R
Box 2 is the diode.
eV
I I o exp
kT
1
I
kT
V
log 1
e
Io
I
kT
log .
e
Io
I
kT
g (I )
log .
e
Io
Therefore,
Vout g f (Vin )
V
kT
log in .
e
Io R
Example:
log
amp
Box 1 is the resistor.
Vin
Vin
I
, so f (Vin ) .
R
R
Box 2 is the diode.
eV
I I o exp
kT
1
I
kT
V
log 1
e
Io
I
kT
log .
e
Io
I
kT
g (I )
log .
e
Io
Therefore,
Vout g f (Vin )
V
kT
log in .
e
Io R
Example:
log
amp
Box 1 is the resistor.
Vin
Vin
I
, so f (Vin ) .
R
R
Box 2 is the diode.
eV
I I o exp
kT
1
I
kT
V
log 1
e
Io
I
kT
log .
e
Io
I
kT
g (I )
log .
e
Io
Therefore,
Vout g f (Vin )
V
kT
log in .
e
Io R
Example:
log
amp
Box 1 is the resistor.
Vin
Vin
I
, so f (Vin ) .
R
R
Box 2 is the diode.
eV
I I o exp
kT
1
I
kT
V
log 1
e
Io
I
kT
log .
e
Io
I
kT
g (I )
log .
e
Io
Therefore,
Vout g f (Vin )
V
kT
log in .
e
Io R
Example:
log
amp
Box 1 is the resistor.
Vin
Vin
I
, so f (Vin ) .
R
R
Box 2 is the diode.
eV
I I o exp
kT
1
I
kT
V
log 1
e
Io
I
kT
log .
e
Io
I
kT
g (I )
log .
e
Io
Therefore,
Vout g f (Vin )
V
kT
log in .
e
Io R
Example:
log
amp
Box 1 is the resistor.
Vin
Vin
I
, so f (Vin ) .
R
R
Box 2 is the diode.
eV
I I o exp
kT
1
I
kT
V
log 1
e
Io
I
kT
log .
e
Io
I
kT
g (I )
log .
e
Io
Therefore,
Vout g f (Vin )
V
kT
log in .
e
Io R
A Multiplier
Recall
log(ab) log(a ) log(b)
log(a)
Vin1
Log Amp
ab
Summing
Amp
Vin2
log(a)+log(b)
=log(ab)
Log Amp
log(b)
Exponential
Amp
Vout
A Divider
Recall
log( a / b) log( a) log(b)
log(a)
Vin1
Log Amp
a/b
Differential
Amp
Vin2
log(a)-log(b)
=log(a/b)
Log Amp
log(b)
Exponential
Amp
Vout
Calculus
Differentiator
R1
1k
Vin
C1
1uF
Vout
Calculus
Vin
Differentiator
Integrator
R1
1k
C1
1uF
C1
1uF
Vout
Vin
R1
1k
Vout
Etc.
• Can you think of a circuit to take cube
roots?
• We can fashion sophisticated analog
computers this way.