Transcript Slide 1

Spin-orbit coupling induced magneto-resistance effects in ferromagnetic
semiconductor structures: TAMR, CBAMR, AMR
Tomas Jungwirth
Institute of Physics ASCR
Karel Výborný, Jan Zemen, Jan Mašek,
Vít Novák, Kamil Olejník, Ludvík Smrčka,
Jan Kučera, Nataliya Goncharuk, et al.
University of Nottingham
Bryan Gallagher, Richard Campion, Kevin
Edmonds, Andrew Rushforth, Tom Foxon, et al.
University & Hitachi Cambridge
Jorg Wunderlich, Andrew Irvine, Elisa de Ranieri,
Byonguk Park, et al.
Texas A&M
Jairo Sinova, et al.
University of Texas
Allan MaDonald, Maxim Trushin,et al.
Wuerzburg University
Charles. Gould, Laurens Molenkamp, et al.
Experimental observation of (ohmic) AMR
magnetization
Lord Kelvin 1857
current
AMR sensors: dawn of spintronics
Inductive read elements
Magnetoresistive read elements
1980’s-1990’s
Now often replaced by GMR or TMR but still extensively used in e.g. automotive industry
Theory of AMR: current response to magnetization via spin-orbit coupling
Model for transition metal FMs:
itinerant 4s:
no exch.-split
no SO
localized 3d:
exch. split
SO coupled
Miscroscopic theory: relativistic LDA
ss
sd
ss
sd
Smit 1951
&
Kubo formula
theory
experiment
FeNi
Banhart&Ebert EPL‘95
?
Renewed research interest in AMR due to FS like (Ga,Mn)As
Ohno. Science ’98
MnGa acceptor:
electrical conduction similar to
conventional p-doped GaAs
>1.5% Mn
~
metallic
7%
2.5%
~0.1% Mn
1%
insulating
x=0.07%
<<0.1% Mn
Jungwirth et al. PRB ’07
Renewed research interest in AMR due to FS like (Ga,Mn)As
(Ga,Mn)As
d/dT~cv
Mn moment:
Ferromagnetism reminiscent of
conventional metal band FMs (Fe, Co, Ni,..)
Ni
 h+
Tc
 h+
(Ga,Mn)As
>1% Mn
~
ferromagnetic
Tc
Novak et al. PRL ’08
Renewed research interest in AMR due to FS like (Ga,Mn)As
AMR’s of order ~1-10%:
- routine characterization tool
- semi-quantitatively described assuming
scattering of valence-band holes
Baxter et al. PRB ’02, Jungwirth et al. APL’02, ‘03
Magnitude, control,
and tuneability of MR
Simple direct link between
band structure and transport
Complexity of the
device design

SET
Chemical potential
micro-structures
 CBAMR
DOS
MTJ
heterostructures
Tunneling DOS
 TAMR
bulk
Resistor
Scattering lifetimes
 ohmic AMR
Magnetic anisotropies in (Ga,Mn)As valence band
degenerate HH bands and LH
bands in GaAs:
j=3/2
anisotropic surface and spintexture due to crystal and SO
coupling in As(Ga) p-orbitals
HH
HH & LH Fermi surfaces
exchange-split HH bands and LH
bands in (Ga,Mn)As:
anisotropic due to crystal, SO
coupling and FM exchange field
HH
HH
M
Dietl et al. PRB ’01,
Abolfath et al. PRB ‘01
TAMR: spectroscopy of tunneling DOS anisotropy
k - resolved tunneling DOS
electrode
barrier
GaMnAs
M
Giddings et al. PRL ’04

Vbias Binpl
M
Selectivity tuned by choice of barrier,
counter-electrode, or external fields
TAMR: spectroscopy of tunneling DOS anisotropy
Gould et al. PRL ’04
M
M
Au
AlOx
GaMnAs
Non-selective barrier and counterelectrode  only a few % TAMR
TAMR: spectroscopy of tunneling DOS anisotropy
M
p-(Ga,Mn)As
M
n-GaAs:Si
Giraud et al. APL ’05, Sankowski
et al. PRB’07, Ciorga et al.NJP’07,
Jerng JKPS ‘09

Very selective p-n Zener diode MTJs
Binpl
Giraud et al. Spintech ’09
TAMR: spectroscopy of tunneling DOS anisotropy
M
p-(Ga,Mn)As
M
Extra-momentum due to
Lorentz force during tunneling
n-GaAs:Si

Very selective p-n Zener diode MTJs
Binpl
Giraud et al. Spintech ’09
CBAMR: M-dependent electro-chemical potentials in a FM SET
Wunderlich et al. PRL ’06
Source
[110]
M
[100]
[110]

Q VD
Drain
Gate
VG
[010]

(Q  Q0 ) 2
U
& Q0  CG [VG  VM ( M )]
2C

 ( M ) C
& VM 
e
CG electric & magnetic
control of CB oscillations
Huge MRs controlled by low-gate-voltage:
likely the most sensitive spintronic transistors to date
Wunderlich et al. PRL ’06
Schlapps et al. arXiv:0904.3225
Simple direct link between
band structure and transport
Chemical potential
 CBAMR
SET

DOS
Tunneling DOS
 TAMR
MTJ
Scattering lifetimes
 AMR
Resistor
Simplicity of the microscopic
picture of AMR in (Ga,Mn)As
SET
CBAMR,TAMR:
SO & FM polarized bands
M
MTJ
MnGa
-
Resistor
ohmic AMR:
main impurities – FM polarized
random MnGa  can consider
bands with SO coupling only
MnGa
-
Simplicity of the microscopic
physical picture in (Ga,Mn)As
SET
current
CBAMR: only el.-chem potentials
 no M vs current term
M
cryst. axis
TAMR: current direction is cryst. distinct
 inseparable M vs current term
current
M
MTJ
cryst. axis
current
Resistor
AMR: M vs current (non-crystalline) term can
be separated and dominates in (Ga,Mn)As
M
cryst. axis
Key mechanism for AMR in (Ga,Mn)As:
FM impurities & SO carriers in non-cryst.-like spherical bands
KL Hamiltonian in spherical approximation
MGa
Heavy holes
current
Electro-magnetic impurity potential of MnGa acceptor
Vimp

 ˆ
ˆ
ˆ
~ 1  eM  sˆ  1  eM  j / 3
Rushforth PRL’07, Trushin et al. arXiv:0904.3785, Vyborny et al. arXiv:0906.3151
Pure magnetic MnGa impiruties: positive AMR,
Vimp
 (M || I)   (M  I)
 ˆ
~ eM  j
Backward-scattering matrix elements
 | ˆjx | ~  |  0
 | ˆjx | ~  |  0
 | ˆjx | ~  |  0
 |
 |
current
ˆj y | ~  |  0
ˆj y | ~  |  0

-
-
Electro-magnetic MnGa impiruties: negative AMR,
Vimp
 (M || I)   (M  I)
 ˆ
ˆ
~ 1  eM  j / j
current
Backward-scattering matrix elements
 | 1ˆ  ˆjx / j | ~  |   |  0
 | 1ˆ  ˆjx / j | ~  |   |  0
 | 1ˆ  ˆjx / j | ~  |  0
 | 1ˆ  ˆj y / j | ~  |  0

-
-
Electro-magnetic MnGa impiruties: negative AMR,
Vimp
 (M || I)   (M  I)
 ˆ
ˆ
~ 1  eM  j / 3
 ~ screened Coulomb potential

p [1021 cm-3]
current
AMR
all scatt.
backward scatt.
AMR=
-
202-1
244-2 4+1
-
-
Electro-magnetic MnGa impiruties: negative AMR,
Vimp
 (M || I)   (M  I)
 ˆ
ˆ
~ 1  eM  j / 3
 ~ screened Coulomb potential

p [1021 cm-3]
current
AMR
all scatt.
backward scatt.
AMR=
-
202-1
244-2 4+1
-
-
Straightforward intuition for AMR in Rashba and Dresselhaus 2DEGs
Trushin et al. arXiv:0904.3785
& exact analytical solutions to full integral Boltzmann equation
 SO-coupled 2DEGs are ideal testbed to study AMR