Transcript Slide 1

Magneto-transport anisotropy phenomena in GaMnAs and beyond
Tomas Jungwirth
Institute of Physics ASCR
Karel Výborný, Alexander Shick. Jan
Zemen, Jan Mašek, Vít Novák, Kamil
Olejník,, et al.
University of Nottingham
Bryan Gallagher, Richard Campion, Kevin
Edmonds, Andrew Rushforth, Tom Foxon, et al.
University & Hitachi Cambridge
Jorg Wunderlich, Andrew Irvine, Elisa de Ranieri,
Byonguk Park, et al.
Texas A&M
Jairo Sinova, et al.
University of Texas
Allan MaDonald, Maxim Trushin,et al.
University of Wuerzburg
Charles. Gould, Laurens Molenkamp, et al.
Observations made from studies of AMR phenomena in GaMnAs (outline)
1. More than just bulk AMR in ohmic devices: TAMR, CBAMR
2. In DMSs bulk AMR has the simplest intuitive picture
3. TAMR and CBAMR are transferable to room-T metal FMs & AFMs
Experimental observation of (ohmic) AMR
magnetization
Lord Kelvin 1857
current
AMR sensors: dawn of spintronics
Inductive read elements
Magnetoresistive read elements
1980’s-1990’s
Now often replaced by GMR or TMR but still extensively used in e.g. automotive industry
Problems with small magnitude and scaling
Theory of AMR: current response to magnetization via spin-orbit coupling
Model for transition metal FMs:
itinerant 4s:
no exch.-split
no SO
localized 3d:
exch. split
SO coupled
Miscroscopic theory: relativistic LDA
ss
sd
ss
sd
Smit 1951
&
Kubo formula
theory
experiment
FeNi
Banhart&Ebert EPL‘95
?
Renewed research interest in AMR due to FS like (Ga,Mn)As
Ohno. Science ’98
MnGa acceptor:
electrical conduction similar to
conventional p-doped GaAs
>1.5% Mn
~
metallic
7%
2.5%
~0.1% Mn
1%
insulating
x=0.07%
<<0.1% Mn
Jungwirth et al. PRB ’07
Renewed research interest in AMR due to FS like (Ga,Mn)As
(Ga,Mn)As
d/dT~cv
Mn moment:
Ferromagnetism reminiscent of
conventional metal band FMs (Fe, Co, Ni,..)
Ni
 h+
Tc
 h+
(Ga,Mn)As
>1% Mn
~
ferromagnetic
Tc
Novak et al. PRL ’08
Renewed research interest in AMR due to FS like (Ga,Mn)As
AMR’s of order ~1-10%:
- routine characterization tool
- semi-quantitatively described assuming
scattering of valence-band holes
Baxter et al. PRB ’02, Jungwirth et al. APL’02, ‘03
Magnetic anisotropies in (Ga,Mn)As valence band
degenerate HH bands and LH
bands in GaAs:
j=3/2
anisotropic surface and spintexture due to crystal and SO
coupling in As(Ga) p-orbitals
HH
HH & LH Fermi surfaces
exchange-split HH bands and LH
bands in (Ga,Mn)As:
anisotropic due to crystal, SO
coupling and FM exchange field
HH
HH
M
Dietl et al. PRB ’01,
Abolfath et al. PRB ‘01
Magnitude, control,
and tuneability of MR
Simple direct link between
band structure and transport
Complexity of the
device design

SET
Chemical potential
micro-structures
 CBAMR
DOS
MTJ
heterostructures
Tunneling DOS
 TAMR
bulk
Resistor
Scattering lifetimes
 ohmic AMR
TAMR: spectroscopy of tunneling DOS anisotropy
k - resolved tunneling DOS
electrode
barrier
GaMnAs
M
Giddings et al. PRL ’04

Vbias Binpl
M
Selectivity tuned by choice of barrier,
counter-electrode, or external fields
TAMR: spectroscopy of tunneling DOS anisotropy
Gould et al. PRL ’04
M
M
Au
AlOx
GaMnAs
Non-selective barrier and counterelectrode  only a few % TAMR
TAMR: spectroscopy of tunneling DOS anisotropy
M
p-(Ga,Mn)As
M
n-GaAs:Si
Giraud et al. APL ’05, Sankowski
et al. PRB’07, Ciorga et al.NJP’07,
Jerng JKPS ‘09

Very selective p-n Zener diode MTJs
Binpl
Giraud et al. Spintech ’09
TAMR: spectroscopy of tunneling DOS anisotropy
M
p-(Ga,Mn)As
M
Extra-momentum due to
Lorentz force during tunneling
n-GaAs:Si

Very selective p-n Zener diode MTJs
Binpl
Giraud et al. Spintech ’09
CBAMR: M-dependent electro-chemical potentials in a FM SET
Wunderlich et al. PRL ’06
Source
[110]
M
[100]
[110]

Q VD
Drain
Gate
VG
[010]

(Q  Q0 ) 2
U
& Q0  CG [VG  VM ( M )]
2C

 ( M ) C
& VM 
e
CG electric & magnetic
control of CB oscillations
Huge MRs controlled by low-gate-voltage:
likely the most sensitive spintronic transistors to date
Wunderlich et al. PRL ’06
Schlapps et al. PRB ‘09
Simple direct link between
band structure and transport
Chemical potential
 CBAMR
SET

DOS
Tunneling DOS
 TAMR
MTJ
Scattering lifetimes
 AMR
Resistor
Simplicity of the microscopic
picture of AMR in (Ga,Mn)As
SET
CBAMR,TAMR:
SO & FM polarized bands
M
MTJ
MnGa
-
Resistor
ohmic AMR:
main impurities – FM polarized
random MnGa  can consider
bands with SO coupling only
MnGa
-
Simplicity of the microscopic
physical picture in (Ga,Mn)As
SET
current
CBAMR: only el.-chem potentials
 no M vs current term
M
cryst. axis
TAMR: current direction is cryst. distinct
 inseparable M vs current term
current
M
MTJ
cryst. axis
current
Resistor
AMR: M vs current (non-crystalline) term can
be separated and dominates in (Ga,Mn)As
M
cryst. axis
Key mechanism for AMR in (Ga,Mn)As:
FM impurities & SO carriers in non-cryst.-like spherical bands
KL Hamiltonian in spherical approximation
MGa
Heavy holes
current
Electro-magnetic impurity potential of MnGa acceptor
Vimp

 ˆ
ˆ
ˆ
~ 1  eM  sˆ  1  eM  j / 3
Rushforth PRL’07, Trushin et al. PRB ‘09, Vyborny et al. PRB ‘09
Pure magnetic MnGa impiruties: positive AMR,
Vimp
 (M || I)   (M  I)
 ˆ
~ eM  j
Backward-scattering matrix elements
 | ˆjx | ~  |  0
 | ˆjx | ~  |  0
 | ˆjx | ~  |  0
 |
 |
current
ˆj y | ~  |  0
ˆj y | ~  |  0

-
-
Electro-magnetic MnGa impiruties: negative AMR,
Vimp
 (M || I)   (M  I)
 ˆ
ˆ
~ 1  eM  j / j
current
Backward-scattering matrix elements
 | 1ˆ  ˆjx / j | ~  |   |  0
 | 1ˆ  ˆjx / j | ~  |   |  0
 | 1ˆ  ˆjx / j | ~  |  0
 | 1ˆ  ˆj y / j | ~  |  0

-
-
Electro-magnetic MnGa impiruties: negative AMR,
Vimp
 (M || I)   (M  I)
 ˆ
ˆ
~ 1  eM  j / 3
 ~ screened Coulomb potential

p [1021 cm-3]
current
AMR
all scatt.
backward scatt.
AMR=
-
202-1
244-2 4+1
-
-
Electro-magnetic MnGa impiruties: negative AMR,
Vimp
 (M || I)   (M  I)
 ˆ
ˆ
~ 1  eM  j / 3
 ~ screened Coulomb potential

p [1021 cm-3]
current
AMR
all scatt.
backward scatt.
AMR=
-
202-1
244-2 4+1
-
-
Negative and positive and crystalline AMR in R&D 2D system
Dresselhaus
Rashba
current
AMR in 2D R&D and 3D KL system from exact solution to integral Boltzmann eq.
contains only cos and sin harmonics
analytical solution to the integral Boltzmann eq.
AMR in transition/noble metals
Model for transition metal FMs:
itinerant 4s:
no exch.-split
no SO
localized 3d:
exch. split
SO coupled
Miscroscopic theory: relativistic LDA
ss
sd
ss
sd
Smit 1951
&
Kubo formula
theory
experiment
FeNi
Banhart&Ebert EPL‘95
?
TAMR and CBAMR predictions for metals
ab intio theory
Wunderlich et al., PRL ’06,Shick, et al, PRB '06
Anisotropy in DOS
Anisotropy in chemical potential
Experimental observation of large and bias dependent TAMR
Shick et al PRB ’06, Parkin et al PRL ‘07, Park et al PRL '08
ab intio theory
TAMR in SO-coupled FMs
Park et al PRL '08
experiment
Experimental observation of CBAMR in metals
Bernand-Mantel et al Nat. Phys.‘09
Optimizing TAMR/CBAMR in transition-metal structures
spontaneous moment
Consider TM combinations containing Mn
e.g. FM Mn/W  upto ~100% TAMR
Shick, et al PRB ‘08
But most transition/noble metals with Mn are AFMs!
AFM spintronics
Zero stray field in compensated AFMs
Ultrafast dynamics of spin excitations
Mn2Au
spin-dn
Predicted strong AFM with no frustration
spin-up
MnIr
Conventional AFM
spin-dn
spin-up
Element specific MAE (meV)
Magnetic moments (mB)
*MAE accuracy ~0.01 meV
Local Mn-atom moment contributes only little to the MAE
Most of the MAE comes from zero moment Au, Ir atoms
Each of localized 3d(Mn)- sublattices  induces the magnetic moment
on 5d-site
Strong 5d-SOC produces the MAE
Summing over 3d(Mn)- sublattices 
=0
- non-zero!
complies with t-reversal symmetry
of AFM
Strong 5d-SOC x 3d(Mn)-exchange filed x local
susceptibility produce the MAE
TAMR and CBAMR
ADOS([,f][’,f’]) = [DOS[, f]–DOS[’,f’]]/ DOS[’,f’]
and ATDOS = [TDOS[, f]–TDOS[’,f’]]/TDOS[’,f’]
Hard [001]-to-easy [110]
ADOS([001]-[110]) ~ 50 %
ATDOS([001]-[110]) ~ 20 %
=Ef[001]-Ef[110]=-2.5 mV
Sizable TAMR and CBAMR in AFMs
Effect of in-plane strain – moment reorientations and TAMR
[010]
MAE  K4|| cos4f  K
*
2||
cos2f
K4||  0.01 meV K *2||  0.07 meV at 1%
Easy [110]  Easy [010] at <1% strain
[100]
1% strain
Strain-induced TAMR
ADOS([110]-[010]) ~ 20 %
ATDOS([110]-[010]) ~ 20 %
GMR/TMR and spin-torque relay on coherence & quality of interfaces  in principle
possible but likely very difficult to build AFM spintronics on these effects
Instead bulid AFM spintronics on a set of magnetic anisotropy phenomena
Piezo- (or other) electric control of AF moment orientation & TAMR (CBAMR)
exy = 0.1%
exy = 0%
Observations made from studies of AMR phenomena in GaMnAs (summary)
1. More than just bulk AMR in ohmic devices: TAMR, CBAMR
2. In DMSs bulk AMR has the simplest intuitive picture
3. TAMR and CBAMR are transferable to room-T metal FMs & AFMs