Design of RF CMOS Low Noise Amplifiers Using a Current Based

Download Report

Transcript Design of RF CMOS Low Noise Amplifiers Using a Current Based

Design of RF CMOS Low
Noise Amplifiers Using a
Current Based MOSFET
Model
Virgínia Helena Varotto Baroncini
Oscar da Costa Gouveia Filho
OUTLINE
1.
2.
3.
4.
5.
6.
Introduction
MOSFET Model
High-Frequency Noise Model
LNA Analysis
LNA Design Example
Conclusion
Introduction
• Submicrometer CMOS technology
integration of RF circuits.
allows
the
• Low voltage and low power operation → moderate
inversion
• Model valid from weak to strong inversion
MOSFET MODEL
D
I(VG,VS)
G
I D  I F  I R  I VG ,VS   I VG ,VD 
I(VG,VD)
IF= forward current
B
IR= reverse current
S
'


Q
IS  D 
'  W 

I F  R   μn  C ox
'
2 L  nC ox
T

2
T

Q'IS  D  
 2

'

nC
ox T 


2
Normalized currents
1  i f (r )
where
and
i f (r ) 
QIS ( D )
1  
 t
nC ox
IF
IS
2

'
t W
I S   .n.C ox
2 L
are the normalized currents
is the normalization current
Operation Regions of the MOS transistor
ir
103
strong
102 moderate
triode
reverse saturation
ir > 100 if
forward saturation
100
weak
10-1
weak
strong
10-3
10-3
if > 100 ir
10-1 100
102 103
1
if
Small signal parameters
Transconductances
gms
2I s

t


g ms
gm 
n
1 if 1
Capacitances
2

C gs  WLC ox
3
C gb


1 if 1

1 if  2

1 if 1
 n  1
  C gs 

WLCox
 n 
2
High- Frequency Noise
Model
Rg
G
S
B
SvRg
D
gmsVsb
Cgb
Sig
Cgs
gmVgb
Sid
S
B
Channel Thermal Noise
4kTμ  Q I
S id  
L2

1
2
S id  4kTgms 
 3
1

i

1
f



1  i f  1  1 


10-23
Sid (A2/Hz)
10-24
10-25
10-26
10-27
10-28
10-29
10-3
10-2 10-1
100
101
102
103 if
Induced Gate Noise
ωC 
2
S ig  4kTδ
gs
5gms
δ  ω W  L  C 
8

S ig  kT
45
μ0 nT

2
10
10
Sig(A 2 /Hz)
10
10
10
10
10
3
'
ox

1 if

 1  
1 if
1 if  1

-45
-46
-47
-48
-49
W /L=1000
W /L=2000
W /L=3000
W /L=4000
W /L=5000
-50
-51
10
-3
10
-2
10
-1
0
10
inversion level
10
1
10
2
10
3
4
 2 

2

LNA Analysis
Cascode LNA with inductive source degeneration
VDD
Ld
Vb
Vin
Lg
M2
M1
LS
Impedance Matching
Lg
Cgb
Cgs
gmbVsb
Zin
Z1
Z1 
gmsVgs
Ls
1

2
 Ls C gs g m
1
jC gs
1 2
 Ls C gs g m
Z1 can be viewed as the parallel of a resistor R with the
capacitance Cgs
Simplified small signal model for the LNA

Lg  R 2C 1  2 Lg C 
R
Z in 
 j
2 2 2
1  R C
1   2 R 2C 2
matching is achieved simply by making the real part of Zin equal
to the source resistance and its imaginary part equal to zero.
Rs C gs  C gb 
Ls 

ωT
C gs
Lg 
1
ω02 C gb  C gs 
Definition
Noise Figure
Total  output  noise
F
Total  output  noise  due  to  the  source
LNA small-signal model for noise calculations
The noise figure can be expressed as a function of if
Noise figure versus W/L for several inversion levels at 2.5 GHz
4
if=15
if=20
if=25
if=30
if=35
3.5
Noise Figure (dB)
3
2.5
2
1.5
1
500
1000
1500
2000
2500
3000
W/L
3500
4000
4500
5000
LNA Design Example
LNA Design Parameters
Resonance frequency
Supply voltage
Length
Source resistance
Noise Figure
2,5 GHz
2,5 V
0,35 m
50 
< 2dB
Procedure
1. Choice of the inversion level
if=35
2. Ls for impedance matching
3  n  1  L 
Ls  RS 

4  n  T 

2


2
1 i f  1  2




1 if 1
2

1  i f  2 

1 if  2

1 if 1 

3. Transistor width for minimum noise figure
4
if=15
if=20
if=25
if=30
if=35
3.5
Noise Figure (dB)
3
2.5
2
1.5
1
500
1000
1500
2000
2500
3000
W/L
3500
4000
4500
5000
Noise figure versus W/L for several inversion levels at 2.5 GHz
4. Lg to satisfy the resonance frequency
Lg 

 WLC ox 2 1  i f
2
0
'

 1 1  i

 2  3n  1
3n 1  i f  1
f
2

1 if 1
5. Ld to adjust the gain and the output resonance frequency
2
LNA Design Results
W/L
W
ID
Rs
Ls
Lg
Ld
1500
525 m
4,1 mA
50 
0,7 nH
7,6 nH
2,5 nH
VDD
RLd
Ld
M1
RS
Lg
Vin +Vbias
M2
Ls
Vout
CL
Simulation results
Input impedance
Noise Figure
Conclusions
 The
main advantage of this methodology
is that is valid in all regions of the
operation of the MOS transistors;
 It is possible to move the operation point
of RF devices from strong inversion to
moderate inversion taking advantage of
higher gm/ID ratio, without degrading the
noise figure;