Transcript LAGUNA

LAGUNA
Large Apparatus for Grand
Unification and Neutrino
Astrophysics
Launch meeting, Heidelberg, March 2007,
Lothar Oberauer, TUM
Why ?
Neutrinos oscillations =>
New Particle Physics
 Main line besides future accelerator
experiments
 Baryon number violation ? => Nucleon
decay (Search for Proton Decay)
 Baryon asymmetry  Leptogenesis ?
Q13, CP violation in leptonic sector ?
(Long Baseline Neutrino Experiments)
Astrophysics
New Neutrino Observatories wanted
Neutrinos as probes




Study of gravitational collapse (Supernova
Neutrinos)
Study of star formation in the early
universe (Diffuse Supernovae Neutrinos
Background)
Precision study of thermonuclear fusion
processes (Solar Neutrinos)
Test of geophysical models
(Geoneutrinos)
LENA
Low Energy Neutrino Astronomy
 Diffuse Supernovae Neutrino Background
 Supernova Neutrinos
 Solar Neutrinos
 Geoneutrinos
 Proton Decay

LENA: Diffuse SN Background
ne + p -> e+ + n
~25% of events are due to v’s
originating from SN @ z>1!
Rates depend on: supernova
model, star formation rate,
neutrino mass hierarchy
Range 20 to 220 / 10 years
“most probable” value ~ 100
M. Wurm et al., Phys. Rev D 75 (2007) 023007
Information on
Supernova models &
Star Formation rate
(z~2)
LENA: Diffuse SN Background
 optical measurements will determine the SNR with high accuracy
 with this input, the spectral slope of the DSN can be used to
distinguish between different SN explosion scenarios
comparison of count rates
in the energy bins
10MeV < EB1 < 14MeV
15MeV < EB2 < 25MeV
LENA: Supernova Neutrinos
Assumption: Supernova II with 8 solar masses at 10
kpc distance
ne flux and spectrum
ne flux and spectrum
LENA: Supernova Neutrinos
Total neutrino flux
Total energy spectrum
LENA: Supernova Neutrinos
n + p -> n + p
Depending on
threshold: p, nu scattering dominated
by
nm
and
nt
Threshold ~ 50 pe
(photoelectrons)
LENA: Solar Neutrinos
LENA Fiducial Volume for solar n: 18 x 103 m3
• High statistic ( ~ 5.4 x 103 / day )
7Be
n + e -> n + e
test of small flux fluctuations in time
• CNO and pep – neutrinos ( ~ 3 x 102 / day )
solar neutrino luminosity
contribution of CNO cycle to solar energy release
• Charged current ne (13C,13N) e- reaction ( ~ 103 / year )
spectroscopy of 8B-n at energies below 5 MeV
(A. Ianni et al., hep-ph/0506171)
LENA: Solar Neutrinos
Standard MSW scenario
Non standard Interactions ?
(e.g. flavor changing neutral currents)
7Be
pep CNO
8B
Friedland, Lunardini, Peña-Garay, hep-ph/0402266
CNO and the age of Globular
Clusters
 14N(p,g)15O



new value? (new
result from LUNA)
Prediction CNO-n altered by
factor ~2
Age of Globular Clusters
increased by factor 0.7 bis 1
Gy !
Measurement of CNO -n :
determination of metallicity in
the centre of the Sun
LENA: Solar Neutrinos
Electron recoil spectrum
Requirements:
low background levels
in U, Th, 210Pb
at least ~4000 m.w.e.
shielding
LENA: Geo Neutrinos
• Detection via inverse beta
decay
• measurement of radiogenic
contribution to terrestrial heat
(~ 40 TW)
• test of the Bulk Silicate
Earth model
• test of unorthodox models of
Earth‘s core (is there a breeder
reactor ?)
Rate of Geo-neutrinos in LENA
LENA @ Pyhäsalmi: ~ 1.5 x 103 events / year
Scaling
KamLAND result
to LENA:
Positron spectrum (arb. units)
between 3 x 102
and 3 x 103
events / year
Uranium
Uranium + Thorium
Proton Decay in Supersymmetry
SU(5)

GUT scale:

Preferred decay modes:
t
= (0.3 – 3) 1034 y
(S.Raby et al, 2002)
t
< 1035 y
(Babu, Pati, Wilzcek, 1998)
Proton Decay
(non SUSY)
(P. Nath 2006)
Limits from
SuperKamiokande:
LENA: Proton Decay
LENA: Proton Decay
LENA: Separartion e- m-like events ?
Conclusions
• LAGUNA – Design study for a large future European
observatory (Water, Argon, Scintillator)
design study until ~ 2011
on APpec road map for Launch after design study
completed
• LENA – Physics Potential in Low Energy Neutrino
Astronomy and Proton Decay
Proton Decay: T. Marrodan-Undagoitia et al., Phys. Rev. D 72 (2005) 075014
Geo-Nus:
K.. Hochmuth et al., Astropart. Phys. 27 (2007) 21
DSNB:
M. Wurm et al., Phys. Rev. D 75 (2007) 023007