laguna milos 2

Download Report

Transcript laguna milos 2

LAGUNA
Large Apparatus for Grand Unification and
Neutrino Astronomy
 Future Observatory for n-Astronomy at low
energies
 Search for proton decay (GUT)
 Detector for “long-baseline” experiments

LAGUNA
COLLABORATING INSTITUTES
APC, Paris, France
CEA, Saclay, France
CPPM, IN2P3-CBRS, Marseille, France
CUPP, Pyhäsalmi, Finland
ETHZ, Zürich, Switzerland
Institute for Nuclear Research, Moscow, Russia
IPNO, Orsay, France
LAL, IN2P3-CNRS, Orsay, France
LPNHE, IN2P3-CNRS, Paris, France
MPI-K Heidelberg, Germany
Max Planck für Physik, München, Germany
Technische Universität München, Germany
Universidad de Granada, Spain
Universität Hamburg, Germany
University of Bern, Switzerland
University of Helsinki, Finland
University of Jyväskylä, Finland
University of Oulu, Finland
University of Silesia, Katowice, Poland
University of Sheffield, UK
DETECTOR LOCATIONS
Rrumania
Institute of Physics and Nuclear Engineering, Bucharest IFIN-HH Romania
Beneficiary for the design study
1. (Coordinator) Swiss Federal Institute of Technology Zurich ETH Zurich Switzerland
2. University of Bern U-Bern Switzerland
3. University of Jyväskylä U-Jyväskylä Finland
4. University of Oulu U-Oulu Finland
5. Kalliosuunnittelu Oy Rockplan Ltd Rockplan Finland
6.Commissariat àl’Energie Atomique /Direction des Sciencesde la Matière
CEA France
7.Institut National de Physique Nucléaire et de Physique des Particules
(CNRS/IN2P3) IN2P3 France
8.Max-Planck-Gesellschaft
9. Technische Universität München TUM Germany
10. H.Niewodniczanski Institute of Nuclear Physics of the Polish IFJ PAN Poland
11. Academy of Sciences, Krakow KGHM CUPRUM Ltd Research and
Development Centre KGHM CUPRUM Poland
12. Mineral and Energy Economy Research Institute of the Polish
Academy of SciencesIGSMiEPAN Poland
13. Laboratorio Subterraneo de Canfranc LSC Spain
14. Universidad Autonoma, Madrid UAM Spain
15. University of Granada UGR Spain
16. University of Durham UDUR United Kingdom
17. The University of Sheffield U-Sheffield United Kingdom
18. Technodyne International Ltd Technodyne United Kingdom
19. University of Aarhus U-Aarhus Denmark
20. AGT Ingegneria Srl, Perugia AGT Italy
21.Institute of Physics and Nuclear Engineering, Bucharest IFIN-HH Romania
22. Lombardi Engineering Limited Lombardi Switzerland
FP 7 design study recommendations
LAGUNA:
Design of a pan-European Infrastructure for
Large Apparatus studying Grand Unification and Neutrino Astrophysics
Key questions in particle and astroparticle physics can be answered only by construction of
new giant underground observatories to search for rare events and to study sources of terrestrial
and extra-terrestrial neutrinos.
In this context, the European Astroparticle Roadmap of 03/07, via ApPEC and ASPERA, states:
...recommend a new large European infrastructure, an international multi-purpose facility of 1001000 kton scale for improved studies of proton decay and low-energy neutrinos.
Water-Cherenkov, Liq. Scintillator & Liq. Argon should be evaluated as a common design study
together with the underground infrastructure and eventual detection of accelerator neutrino
beams.
This study should take into account worldwide efforts and converge by 2010...
Furthermore, the latest particle physics roadmap from CERN of 11/06 states:
...very important non-accelerator experiments takes place at the overlap of particle and
astroparticle physics exploring otherwise inaccessible phenomena; Council will seek with ApPEC
a coordinated strategy in these areas of mutual interest.
LAGUNA
Large Apparatus for Grand Unification
and Neutrino Astrophysics
LENA
liquid scintillator
13,500 PMs for 50 kt target
Water Čerenkov muon veto
coordinated F&E “Design Study”
European Collaboration,
FP7 Proposal
APPEC Roadmap
MEMPHYS GLACIER
Water Čerenkov liquid-Argon
500 kt target in 3 tanks,
3x 81,000 PMs
100 kt target, 20m driftlength,
28,000 PMs foor Čerenkov- und szintillation
Location of Phyasalmi in Finnland
possible orientation of LENA tank
Zur Anzeige wird der QuickTime™
Dekompressor „“
benötigt.
Zur Anzeige wird der QuickTime™
Dekompressor „“
benötigt.
Blue zones are regions with high mechanical stress
due to horizontal rock pressure
Zur Anzeige wird der QuickTime™
Dekompressor „“
benötigt.
Cost estimate from rockplan predesign study
Excavation + site investigation 55 M€
LAB construction + tank 60 M€
Detector: Scintillator+ electronics 190 M€
Engeneering 30 M€
Costs not including Tax and 20 % uncertainty
Astrophysics
Details of a gravitational collapse
(Supernova Neutrinos)
 Studies of star formation in former
epochs of the universe („Diffuse
Supernovae Neutrinos Background“
DSNB)
 High precision studies of thermonuclear fusion processes (Solar
Neutrinos)
 Test of geophysical models (“Geoneutrinos”)

Galactic Supernova in Lena
OBSERVING SN
NEUTRINOS
sensitive to SN dynamics -> matter
induced oscillation
EARTH
Core Collapse
Event rate spectra
  (n  )P n   n    n    
  : from simulations of SN explosions
 P : from n oscillations + simulations (density profile)
  : (well) known
  : under control
Supernova neutrino luminosity (rough sketch)
Relative size of the different luminosities is not well known: it
depends on uncertainties of the explosion mechanism and the
equation of state of hot neutron star matter. Info
on all
neutrino flavors and energies desired!
T. Janka, MPA
Event rates in LENA
Separation of SN models ?

Yes, independent from oscillation model !
neutral current reactions in LENA
e.g.
TBP
KRJ
LL
12C:
700
950
2100
n p:
1500
2150
5750
for 8 solar mass progenitor and 10 kpc distance
Neutrinos from remnanant Supernovae
Early star formation rate
LENA: Diffuse SN Background
ne + p -> e+ + n
Delayed coincidence
Spectral information
Event rate depends on
-Supernova type II rates
-Supernova model
Range: 20 to 220 / 10 y
Background: ~ 1 per year
M. Wurm et al., Phys. Rev D 75 (2007) 023007
Solare Neutrinos
4 p  He  2e  2n e  26.7 MeV
4

Since May
07
Direct observation
BOREXINO
SuperK, SNO
Gallium
integral
Neutrino Energy in MeV
BOREXINO 1st result
(astro-ph 0708.2251v2)

Scattering rate of 7Be solar n on electrons
7Be
n Rate: 47 ± 7STAT ± 12SYS c/d/100 t
Expected from Borexino using new data:
Be7 neutrino flux with high precission (< 10%)
B 8 neutrino spectrum to low energy - shape
information for oscillations
New limit on neutrino magnetic moment
CNO flux measurement
gianni fiorentini, ferrara univ. @ n2004
Geo-Neutrinos : a new probe of
Earth’s interior
Antineutrino detection with inverse ß-decay reaction




Determine the radiogenic contribution to
terrestrial heat flow, only half of the energy
emission from the earth is understood
Test a fundamental geochemical paradigm about
Earh’s origin: the Bulk Sylicate Earth
Test un-orthodox / heretical models of Earth’s
interior (K in the core, Herndon giant reactor)
A new era of applied neutrino physics ?
Heat flow
Neutrino flow
Where are U, Th and K?





The crust (and the upper
mantle only) are directly
accessible to geochemical
analysis.
U, K and Th are “lithofile”, so
they accumulate in the
(continental) crust.
U In the crust is:
Mc(U)  (0.3-0.4)1017Kg.
The  30 Km crust should
contains roughly as much as
the  3000 km deep mantle.
Concerning other elements:
Th/U  4* and 40K/U  1
crust
U. M.
Core


L. M.
For the lower mantle essentially no
direct information: one relies on
data from meteorites through geo(cosmo)-chemical (BSE) model…
According to geochemistry, no U,
Th and K should be present in the
core.
Proton Decay and LENA
p
Kn
• This decay mode is favoured in SUSY theories
• The primary decay particle K is invisible in Water
Cherenkov detectors
• It and the K-decay particles are visible in
scintillation detectors
• Better energy solution further reduces
background
P ->
+
K
n
event structure:
T (K+) = 105 MeV
t K = 12.8 nsec
K+ -> m n
63.5 %)
T (m+) = 152 MeV
K+ -> p p0 21.2 %
T (p+) = 108 MeV
electromagnetic shower
E = 135 MeV
m -> e+ n n t = 2.2 ms)
p -> m n
T = 4 MeV)
m -> e+ n n t = 2.2 ms)
•3 - fold coincidence !
•the first 2 events are monoenergetic !
•use time- and position correlation !
How good can one separate the
first two events ?
....results of a first Monte-Carlo calculation
P decay into K and n
m
m
K
K
Signal in LENA
time (nsec)
Background
Rejection:
• monoenergetic K- and msignal!
• position correlation
• pulse-shape analysis
(after correction on
reconstructed position)
•In LENA, we expect a background of ~ 5 / y without PSD
discrimination
•and after PSD-analysis this could be suppressed in LENA to
~ 0.25 / y ! (efficiency ~ 70% )
•A 30 kt detector (~ 1034 protons as target) would have a
sensitivity of t < a few 1034 years for the K-decay
after ~10 years measuring time
•The minimal SUSY SU(5) model predicts the K-decay mode to
be dominant with a partial lifetime varying from 1029y to 1035 y !
actual best limit from SK: t > 6.7 x 1032 y (90% cl)
Results on fundamental physics from borexino counting test facility
1/100 of Brexino Target mass
1. electron decay
Back et al.,Phys Lett.B 525 (2002) 29-40
2. nucleon decay into invisible.
channels.
Back et al.,Phys Lett.B 563 (2003) 23-34
3. ν magnetic moment
Back et al.,Phys Lett.B 563 (2003) 35-47
4. Heavy ν mixing
Back et al.,JETP Lett. Vol.78 N.5 (2003)
261-266
5. Pauli exclusion principle
Eur.Phys.Journ. C (2004)
Lena= 10000 * CTF
Conclusions
Low Energy Neutrino Astrophysics is very
successful (Borexino direct observation
of sub-MeV neutrinos)
 Strong impact on questions in particleand astrophysics
 New technologies (photo-sensors,
extremely low level background…)
 Strong European groups
