EE4800 CMOS Digital IC Design & Analysis
Download
Report
Transcript EE4800 CMOS Digital IC Design & Analysis
EE4800 CMOS Digital IC Design & Analysis
Lecture 1 Introduction
Zhuo Feng
1.1
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
■ Prof. Zhuo Feng
► Office: EERC 513
► Phone: 487-3116
► Email: [email protected]
■ Class Website
► http://www.ece.mtu.edu/~zhuofeng/EE4800Fall2011.html
► Check the class website for lecture materials, assignments
and announcements
■ Schedule
► TR 12:35pm-13:50pm EERC 227
► Office hours: TR 4:30pm – 5:30pm or by appointments
1.2
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Topics (tentative)
■ Introduction
■ CMOS circuit and layout
■ MOS transistor device characteristics
■ DC and transient responses, delay estimation
■ Logical effort
■ Power
■ SPICE simulation
■ Modified Nodal Analysis (MNA)
■ Interconnect
■ Combinational circuits
■ Sequential circuits
■ Design for Testability
■ Adders
■ SRAM
■ Packaging, power and clock distributions
1.3
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Grading Policy
■ Homework: 40%
■ Quizzes 10%
■ Mid-term Exam: 20%
■ Final Exam: 30%
■ Late homework: 50% penalty/day.
■ Letter Grades:
► A: 85~100; AB: 80~84; B: 75~79; BC: 70~74; C:
65~69; D: 60~64; F: 0~59
1.4
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Moore’s law in Microprocessors
Transistors (MT)
1000
2X growth in 1.96 years!
100
10
486
1
0.1
0.01
P6
Pentium® proc
386
286
8086
8085
8080
8008
4004
0.001
1970
1980
1990
Year
2000
2010
Transistors on Lead Microprocessors double every 2 years
Courtesy, Intel
1.5
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Die Size Growth
Die size (mm)
100
10
8080
8086
8085
8008
4004
1
1970
1980
386
286
P6
Pentium
® proc
486
~7% growth per year
~2X growth in 10 years
1990
Year
2000
2010
Die size grows by 14% to satisfy Moore’s Law
Courtesy, Intel
1.6
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Frequency
Frequency (Mhz)
10000
Doubles every
2 years
1000
100
10
8085
1
0.1
1970
8086 286
386
486
P6
Pentium ® proc
8080
8008
4004
1980
1990
Year
2000
2010
Lead Microprocessors frequency doubles every 2 years
Courtesy, Intel
1.7
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Power Dissipation
100
Pentium ®proc
Power (Watts)
P6
10
8086 286
1
8008
4004
486
386
8085
8080
0.1
1971
1974
1978
1985
Year
1992
2000
Lead Microprocessors power continues to increase
Courtesy, Intel
1.8
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Why Scaling?
■ Technology shrinks by ~0.7 per generation
■ With every generation can integrate 2x more
functions on a chip; chip cost does not increase
significantly
■ Cost of a function decreases by 2x
■ But …
► How to design chips with more and more functions?
► Design engineering population does not double every two
years…
■ Hence, a need for more efficient design methods
► Exploit different levels of abstraction
1.9
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Pentium 4
Deep pipeline (2001)
► Very fast clock
► 256-1024 KB L2$
■ Characteristics
► 180 – 65 nm process
► 42-125M transistors
► 1.4-3.4 GHz
► Up to 160 W
► 32/64-bit word size
► 478-pin PGA
■ Units start to become
invisible on this scale
■
1.10
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Pentium M
Pentium III derivative
► Better power efficiency
► 1-2 MB L2$
■ Characteristics
► 130 – 90 nm process
► 140M transistors
► 0.9-2.3 GHz
► 6-25 W
► 32-bit word size
► 478-pin PGA
■ Cache dominates chip area
■
1.11
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Core2 Duo
Dual core (2006)
► 1-2 MB L2$ / core
■ Characteristics
► 65-45 nm process
► 291M transistors
► 1.6-3+ GHz
► 65 W
► 32/64 bit word size
► 775 pin LGA
■ Much better
performance/power
efficiency
■
1.12
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Core i7
■ Quad core (& more)
► Pentium-style architecture
► 2 MB L3$ / core
■ Characteristics
► 45-32 nm process
► 731M transistors
► 2.66-3.33+ GHz
► Up to 130 W
► 32/64 bit word size
► 1366-pin LGA
► Multithreading
■ On-die memory controller
1.13
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Atom
■ Low power CPU for netbooks
► Pentium-style architecture
► 512KB+ L2$
■ Characteristics
► 45-32 nm process
► 47M transistors
► 0.8-1.8+ GHz
► 1.4-13 W
► 32/64-bit word size
► 441-pin FCBGA
■ Low voltage (0.7 – 1.1 V) operation
► Excellent performance/power
1.14
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Design Abstraction Levels
SYSTEM
MODULE
+
GATE
CIRCUIT
DEVICE
G
S
n+
1.15
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
D
n+
Design Metrics
■ How to evaluate performance of a digital
circuit (gate, block, …)?
► Cost
► Reliability
► Scalability
► Speed (delay, operating frequency)
► Power dissipation
► Energy to perform a function
1.16
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Cost of Integrated Circuits
■ NRE (non-recurrent engineering) costs
► design time and effort, mask generation
► one-time cost factor
■ Recurrent costs
► silicon processing, packaging, test
► proportional to volume
► proportional to chip area
1.17
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Cost per Transistor
cost:
¢-per-transistor
1
0.1
Fabrication capital cost per transistor (Moore’s law)
0.01
0.001
0.0001
0.00001
0.000001
0.0000001
1982 1985
1.18
1988 1991
1994
1997 2000
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
2003 2006
2009 2012
Silicon Lattice
■ Transistors are built on a silicon substrate
■ Silicon is a Group IV material
■ Forms crystal lattice with bonds to four neighbors
1.19
Si
Si
Si
Si
Si
Si
Si
Si
Si
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Dopants
■ Silicon is a semiconductor
■ Pure silicon has no free carriers and conducts poorly
■ Adding dopants increases the conductivity
■ Group V: extra electron (n-type)
■ Group III: missing electron, called hole (p-type)
Si
Si
Si
Si
Si
Si
As
Si
Si
B
Si
Si
Si
Si
Si
-
+
N-type
1.20
+
-
Si
Si
Si
P-type
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
P-N Junctions
■ A junction between p-type and n-type
semiconductor forms a diode.
■ Current flows only in one direction
Current flow direction
p-type
n-type
Electron flow direction
anode
1.21
cathode
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
NMOS Transistor
■ Four terminals: gate, source, drain, body
■ Gate – oxide – body stack looks like a capacitor
► Gate and body are conductors
► SiO2 (oxide) is a very good insulator
► Called metal – oxide – semiconductor (MOS) capacitor
► Even though gate is no longer made of metal
Source
Gate
Drain
Polysilicon
SiO2
n+
Body
p
n+
bulk Si
Substrate, body or bulk
1.22
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
NMOS Operation
■ Body is commonly tied to ground (0 V)
■ When the gate is at a low voltage:
► P-type body is at low voltage
► Source-body and drain-body diodes are OFF
► No current flows, transistor is OFF
Source
Gate
Drain
Polysilicon
SiO2
0
n+
n+
S
p
1.23
bulk Si
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
D
NMOS Operation Cont.
■ When the gate is at a high voltage:
► Positive charge on gate of MOS capacitor
► Negative charge attracted to body
► Inverts a channel under gate to n-type
► Now current can flow through n-type silicon from source
through channel to drain, transistor is ON
Source
Gate
Drain
Polysilicon
SiO2
1
n+
n+
S
p
1.24
bulk Si
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
D
PMOS Transistor
■ Similar, but doping and voltages reversed
► Body tied to high voltage (VDD)
► Gate low: transistor ON
► Gate high: transistor OFF
► Bubble indicates inverted behavior
Source
Gate
Drain
Polysilicon
SiO2
p+
p+
n
1.25
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
bulk Si
Power Supply Voltage
■ GND = 0 V
■ In 1980’s, VDD = 5V
■ VDD has decreased in modern processes
► High VDD would damage modern tiny transistors
► Lower VDD saves power
■ VDD = 3.3, 2.5, 1.8, 1.5, 1.2, 1.0, …
1.26
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Transistors as Switches
■ We can view MOS transistors as electrically
controlled switches
■ Voltage at gate controls path from source to
drain
d
nMOS
pMOS
g=1
d
d
OFF
g
ON
s
s
s
d
d
d
g
OFF
ON
s
1.27
g=0
s
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
s
CMOS Inverter
A
VDD
Y
0
1
A
A
Y
Y
GND
1.28
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
CMOS Inverter
A
VDD
Y
0
1
OFF
0
A=1
Y=0
ON
A
Y
GND
1.29
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
CMOS Inverter
A
Y
0
1
1
0
VDD
ON
A=0
Y=1
OFF
A
Y
GND
1.30
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
CMOS NAND Gate
A
B
0
0
0
1
1
0
1
1
Y
Y
A
B
1.31
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
CMOS NAND Gate
A
B
Y
0
0
1
0
1
1
0
1
1
1.32
ON
ON
Y=1
A=0
B=0
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
OFF
OFF
CMOS NAND Gate
A
B
Y
0
0
1
0
1
1
1
0
1
1
1.33
OFF
ON
Y=1
A=0
B=1
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
OFF
ON
CMOS NAND Gate
A
B
Y
0
0
1
0
1
1
1
0
1
1
1
1.34
ON
A=1
B=0
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
OFF
Y=1
ON
OFF
CMOS NAND Gate
A
B
Y
0
0
1
0
1
1
1
0
1
1
1
0
1.35
OFF
A=1
B=1
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
OFF
Y=0
ON
ON
CMOS NOR Gate
A
B
Y
0
0
1
0
1
0
1
0
0
1
1
0
1.36
A
B
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Y
3-input NAND Gate
■ Y pulls low if ALL inputs are 1
■ Y pulls high if ANY input is 0
Y
A
B
C
1.37
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
CMOS Fabrication
■ CMOS transistors are fabricated on silicon wafer
■ Lithography process similar to printing press
■ On each step, different materials are deposited or
etched
■ Easiest to understand by viewing both top and
cross-section of wafer in a simplified
manufacturing process
1.38
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Inverter Cross-section
■ Typically use P-type substrate for NMOS
transistors
■ Requires N-well for body of PMOS transistors
► Silicon dioxide (SiO2) prevents metal from shorting to other
layers
input A
GND
VDD
Y
SiO2
n+ diffusion
n+
n+
p+
p+
n well
p substrate
nMOS transistor
1.39
p+ diffusion
polysilicon
metal1
pMOS transistor
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Well and Substrate Taps
■ P-type substrate (body) must be tied to GND
■ N-well is tied to VDD
■ Use heavily doped well and substrate contacts (
taps)
► Establish a good ohmic contact providing low resistance for
bidirectional current flow
A
GND
VDD
Y
p+
n+
n+
p+
p+
n well
p substrate
substrate tap
1.40
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
well
tap
n+
Inverter Mask Set
■ Transistors and wires are defined by masks
► Inverter can be obtained using six masks: n-well,
polysilicon, n+ diffusion, p+ diffusion, contacts and metal
■ Cross-section taken along dashed line
A
Y
GND
VDD
nMOS transistor
pMOS transistor
substrate tap
1.41
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
well tap
Detailed Mask Views
■ Six masks
► n-well
n well
► Polysilicon
Polysilicon
► N+ diffusion
n+ Diffusion
► P+ diffusion
► Contact
p+ Diffusion
Contact
► Metal
Metal
1.42
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Fabrication
■ Chips are built in huge factories called fabs
■ Contain clean rooms as large as football fields
Courtesy of International
Business Machines (IBM) Corporation.
Unauthorized use not permitted.
1.43
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Fabrication Steps
■ Start with blank wafer
■ Build inverter from the bottom up
■ First step will be to form the n-well
► Cover wafer with protective layer of SiO2 (oxide)
► Remove layer where n-well should be built
► Implant or diffuse n dopants into exposed wafer
► Strip off SiO2
p substrate
1.44
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Oxidation
■ Grow SiO2 on top of Si wafer
► 900 – 1200 Celcius with H2O or O2 in oxidation
furnace
SiO2
p substrate
1.45
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Photoresist
■ Spin on photoresist
► Photoresist is a light-sensitive organic polymer
► Softens where exposed to light
Photoresist
SiO2
p substrate
1.46
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Lithography
■ Expose photoresist through n-well mask
■ Strip off exposed photoresist
Photoresist
SiO2
p substrate
1.47
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Etch
■ Etch oxide with hydrofluoric acid (HF)
■ Only attacks oxide where resist has been exposed
Photoresist
SiO2
p substrate
1.48
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Strip Photoresist
■ Strip off remaining photoresist
► Use mixture of acids called piranha etch
■ Necessary so resist doesn’t melt in next step
SiO2
p substrate
1.49
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
N-well
■ N-well is formed with diffusion or ion implantation
■ Diffusion
► Place wafer in furnace with arsenic gas
► Heat until As atoms diffuse into exposed Si
■ Ion Implantation
► Blast wafer with beam of As ions
► Ions blocked by SiO2, only enter exposed Si
SiO2
n well
1.50
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Strip Oxide
■ Strip off the remaining oxide using HF
■ Back to bare wafer with n-well
■ Subsequent steps involve similar series of steps
n well
p substrate
1.51
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Polysilicon
■ Deposit very thin layer of gate oxide (SiO2)
► < 20 Å (6-7 atomic layers)
■ Chemical Vapor Deposition (CVD) of silicon layer
► Place wafer in furnace with Silane gas (SiH4)
► Forms many small crystals called polysilicon
► Heavily doped to be good conductor
Polysilicon
Thin gate oxide
n well
p substrate
1.52
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Polysilicon Patterning
■ Use same lithography process to pattern
polysilicon
Polysilicon
Polysilicon
Thin gate oxide
n well
p substrate
1.53
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Self-Aligned Process
■ Use oxide and masking to expose where n+
dopants should be diffused or implanted
■ N-diffusion forms NMOS source, drain, and nwell contact
n well
p substrate
1.54
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
N-diffusion
■
■
■
Pattern oxide and form n+ regions
Self-aligned process where gate blocks diffusion
Polysilicon is better than metal for self-aligned gates
because it doesn’t melt during later processing
n+ Diffusion
n well
p substrate
1.55
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
N-diffusion cont.
■ Historically dopants were diffused
■ Usually ion implantation today
■ But regions are still called diffusion
n+
n+
n+
n well
p substrate
1.56
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
N-diffusion cont.
■ Strip off oxide to complete patterning step
n+
n+
n+
n well
p substrate
1.57
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
P-Diffusion
■ Similar set of steps form p+ diffusion regions for
pMOS source and drain and substrate contact
p+ Diffusion
p+
n+
n+
p+
p+
n well
p substrate
1.58
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
n+
Contacts
■ Now we need to wire together the devices
■ Cover chip with thick field oxide
■ Etch oxide where contact cuts are needed
Contact
Thick field oxide
p+
n+
n+
p+
p+
n well
p substrate
1.59
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
n+
Metallization
■ Sputter on aluminum over whole wafer
■ Pattern to remove excess metal, leaving wires
Metal
Metal
Thick field oxide
p+
n+
n+
p+
p+
n well
p substrate
1.60
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
n+
Layout
■ Chips are specified with set of masks
■ Minimum dimensions of masks determine
transistor size (and hence speed, cost, and
power)
■ Feature size f = distance between source and
drain
► Set by minimum width of polysilicon
■ Feature size improves 30% every 3 years or so
■ Normalize for feature size when describing
design rules
■ Express rules in terms of l = f/2
► E.g. l = 0.3 mm in 0.6 mm process
1.61
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Simplified Design Rules
■ Conservative rules to get you started
1.62
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Inverter Layout
■ Transistor dimensions specified as Width / Length
► Minimum size is 4l / 2l, sometimes called 1 unit
► In f = 0.6 mm process, this is 1.2 mm wide, 0.6 mm long
1.63
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis
Summary
■ MOS Transistors are stack of gate, oxide, silicon
■ Can be viewed as electrically controlled switches
■ Build logic gates out of switches
■ Draw masks to specify layout of transistors
■ Now you know everything necessary to start
designing schematics and layout for a simple chip!
1.64
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis