CiS Pre-Series Report - University of Hawaii
Download
Report
Transcript CiS Pre-Series Report - University of Hawaii
DEPFET sensors for a LC vertex detector (1)
L. Andriceka, P. Fischerb, K. Heinzingera, P. Lechnera, G. Lutza, I. Pericb, M. Reichec, R.H. Richtera, G. Schallera,
M. Schneckea, F. Schoppera, H. Soltaua, L. Strüdera, J. Treisa, M. Trimplb, J. Ulricib, N. Wermesb
aMPI Halbleiterlabor Munich
bUniv. of Bonn
cMPI für Mikrostrukturphysik Halle, Germany
» DEP(leted)F(ield)E(ffect)T(ransistor) operation principles
» Results of pre-tests
» DEPFET prototype run
» Technology, simulation and design
» Wafer thinning
» Concept, first results
» Summary
R. H. Richter et al - VERTEX 2002 Kailua-Kona, 05.11.2002
DEPFET-Prinziple
Radiation
source
top gate
n+
p+
p-channel
internal gate
+
bulk
p+
n+
-n - +
-+
-+
-
drain
potential via axis
top-gate / rear contact
~1mm
~300 mm
totally depleted
n--substrate
potential minimum
for electrons
p+
rear contact
V
FET integrated on high ohmic n-bulk
Advantages:
of thethe
charge
at the
position of collection
Collection Amplification
of electrons within
internal
gate
=> no transfer loss
ModulationFull
of the
FET
current by the signal charge!
bulk
sensitivity
Non structured thin entrance window (backside)
Very low input capacitance => very low noise
R. H. Richter et al - VERTEX 2002 Kailua-Kona, 05.11.2002
Excellent noise values measured on single pixels
Ka
6000
5000
# Zähler
4000
3000
2000
Escape - Peak
Kb
1000
0
2
4
6
Energie [keV]
55Fe-spectra
@ 300K
ENC = 4.8 +/- 0.1 eR. H. Richter et al - VERTEX 2002 Kailua-Kona, 05.11.2002
BioScope - imaging of tracer-marked bio-medical samples
(P. Klein and W. Neeser)
Noise: ca. 70 ENC @ 300K
Slow operation (old technology)
Large arrays are impossible
(JFET => VP variations)
Large cell size
Rectangular DEPFET pixel detector
MOS transistor instead of JFET
A pixel size of ca. 20 x 20 µm² is
achievable using 3µm minimum
feature size.
R. H. Richter et al - VERTEX 2002 Kailua-Kona, 05.11.2002
DEPFET pixel matrix
Low power consumption
Fast random access to
specific array regions
- Read filled cells of a row
- Clear the internal gates
of the row
- Read empty cells
R. H. Richter et al - VERTEX 2002 Kailua-Kona, 05.11.2002
DEPFET Technology
Double poly / double aluminum process
on high ohmic n- substrate
along p-channel
perpendicular to channel (with clear)
R. H. Richter et al - VERTEX 2002 Kailua-Kona, 05.11.2002
Self aligning Technology
Positions of all essential implantations
are determined not by masks
but by polysilicon layers
shallow channel implantation
- mandatory for rectangular cells
(lateral channel definition)
- reduces parameter variations
on the wafer
R. H. Richter et al - VERTEX 2002 Kailua-Kona, 05.11.2002
Technology – pre-tests
Motivation
o Low leakage current <-> new technology
o First MOS transistor parameters for the
DEPFET and readout electronics design
o Process know how and design rules
Pre-tests:
Device test: Single poly, single Al, MOS technology on
300µm silicon
+ Numereous deposition, lithography and etching tests
R. H. Richter et al - VERTEX 2002 Kailua-Kona, 05.11.2002
Pretest results: Diode leakage currents
Reference diodes
Pre-test diodes
IBulk =100pA/cm2
R. H. Richter et al - VERTEX 2002 Kailua-Kona, 05.11.2002
IBulk =100pA/cm2
Linear MOS Transistors (self aligned technolgy)
L=5µm
L=7µm
VGS = -4V...-7V @VB=10V
R. H. Richter et al - VERTEX 2002 Kailua-Kona, 05.11.2002
Pixel prototype production (6“ wafer)
for XEUS and LC (TESLA)
Aim: Select design options for an optimized array operation
(no charge loss, high gain, low noise, good clear operation)
On base of these results => production of full size sensors
Many test arrays
- Circular and linear DEPFETS
up to 128 x 128 pixels
minimum pixel size about 30 x 30 µm²
- variety of special test structures
Production will be finished in spring
R. H. Richter et al - VERTEX 2002 Kailua-Kona, 05.11.2002
imaging spectroscopy
purpose
particle tracking
7.68 x 7.68 cm²
1024 x 1024 pixels
detector format
1.3 x 10 cm² (x 8)
520 x 4000 pixels (x 8)
1 Mpix
2.1 Mpix (x8)
75 µm
pixel size
25 µm
300 ... 500 µm
thickness
50 µm
4 el. ENC
noise
~ 100 el. ENC
1.2 msec
2.5 µsec
readout time
/ detector
/ row
50 µsec
20 nsec
Active Pixel Sensor (rectangular)
•
2 pixels
30 x 30 µm²
•
DEPFET
L = 5 µm
W = 18 µm
reduce the required read out
speed by 2
doubles the number of read out
channels
Potential during collection - 3D Poisson equation (Poseidon)
(50µm thick Si, NB=1013cm-3,VBack=-20V)
Depth 10µm
Depth
Depth1µm
4µm
7µm
External (internal) Gates
Drain
n+ clear contacts
Sources
Cell size 36 x 27 µm²
R. H. Richter et al - VERTEX 2002 Kailua-Kona, 05.11.2002
Hiding the n+-clear contacts
Depth 1µm
The positive Clear pulse removes the electrons
from the Internal Gate and also pushs the holes
out of the deep p cover region. After returning of the
clear the deep p remains negatively charges forming
a shield for the signal electrons.
R. H. Richter et al - VERTEX 2002 Kailua-Kona, 05.11.2002
Potential distribution during Reading
Back contact
Internal Gate
2D dynamic simulation
along the channel
ID adjusted to 100µA
(W/L =18µm/5µm)
Vinternal Gate ca. 3V
Localized charge generation
simulates a hit
Source
Drain
R. H. Richter et al - VERTEX 2002 Kailua-Kona, 05.11.2002
DEPFET simulation – TeSCA (2D, time dependent)
hit response to a generation of 1600 electron-hole pairs
Simulation of the Clear mechanism
TeSCA (2D, time dependent)
Removal of 1600 electrons from the
internal gate (VClear=15V)
Poseidon (3D Poisson equ.)
Includes 3D effects =>
VClear=20V
Current production status
Pixel array section – Design with clockable clear gate
1 Pixel cell
Drain
Gate
N-side view with two polysilicon layers
and contact openings
To do:
- P-side processing
- Metallization
Clear
Clear
gate
Source
R. H. Richter et al - VERTEX 2002 Kailua-Kona, 05.11.2002
Processing thin detectors
- the Idea -
R. H. Richter et al - VERTEX 2002 Kailua-Kona, 05.11.2002
Detector thinning – first results
Thickness of detector region : 50µm
of frame : 350µm
Size: 8cm x 1cm
Wafer bonding – MPI f. Festkörperstrukturphysik, Halle
Wafer grinding – SICO GmbH, Jena
Anisotropic etching – CiS gGmbH Erfurt, MPI Halbleiterlabor Munich
R. H. Richter et al - VERTEX 2002 Kailua-Kona, 05.11.2002
Summary
o
o
o
o
o
DEPFET is promising detector candidate for future HE and astrophysics
experiments. Key features: low noise, full bulk sensitivity, no charge transfer loss,
low power consumption, random access within an array
A new DEPFET technology (2 poly/ 2 aluminum) was developed for large arrays and
high speed operation
A DEPFET Prototype production has been started with DEPFET arrays with
30 x 30 µm² pixel size (TESLA) to 75 x 75 µm² XEUS
- Technology and device simulations are looking encouraging
- Technological pre-tests show very good electrical parameters
(leakage currents and MOS transistor characteristics)
A concept for merging the DEPFET technology with a thinning technology is
proposed
- thin mechanical detector samples were fabricated
First wafers will be finished in spring ‘03
R. H. Richter et al - VERTEX 2002 Kailua-Kona, 05.11.2002
Processing thin detectors
- Wafer bonding 10 “SOI” Wafer prepared by
MPI für Microstrukturphysik, Halle
≈1 cm/sec
Q.-Y. Tong and U. Gösele “ Semiconductor
Wafer Bonding ”
John Wiley & Sons, Inc.
picture from: www.mpi-halle.mpg.de
R. H. Richter et al - VERTEX 2002 Kailua-Kona, 05.11.2002