Transcript Document

Models for
Thermal
& Thermal
Pave the way for heat control
:
Baowen Li (李保文)
Nonlinear and Complex Systems Lab
Department of Physics
1
IMS, 26 Nov 2004
Acknowledgement
Collaborators:
Lei Wang (Temasek Lab, NUS)
Giulio Casati (Como, Italy and NUS)
Financial Support:
NUS Faculty Research Grant
Temasek Young Investigator Award
(DSTA - Defense Science and Technology Agency , Singapore)
2
IMS, 26 Nov 2004
Outline
1 Introduction
Motivations and objective
2 Thermal diode:
Rectification of heat flux
3 Thermal Transistor
Pave the way for heat control
4
Summary
BL, LWang, G Casati, PRL 93, 184301 (2004) (27 Oct.) (Diode)
BL, LWang, G Casati, PRL 94, xx(2005), cond-mat/0410172. (Transistor)
3
IMS, 26 Nov 2004
What is the most important invention in
the 20th century?
Transistor was probably the most
important invention in the 20th century!
4
IMS, 26 Nov 2004
CPU
No.of Trans
1971
4004*
2,300
1972
8008*
3,500
1974
8080
6,000
1978
8086
29,000
1982
286
134,000
1985
386
275,000
1989
486
1,200,000
1993
Pentium
3,100,000
1995
Pentium Pro
5,500,000
1997
Pentium II
7,500,000
2000
Pentium IV
42,000,000
2002
Pentium IV
55,000,000
5
1E7
No. of Transistors
Year
1000000
100000
10000
1000
1970
1975
1980
1985
1990
1995
2000
Year
IMS, 26 Nov 2004
2005
Brief History of (Electric) Transistor
Dec. 1947
June 1948
July 1951
Sept. 1951
1953
(J. Barden and W. Brattain)
(Made public Annoucement)
FET (W Shockley - a Theorist)
(Transistor Symposium to comm.
Licence for 25,000US$)
(Mass production by RAYTHEON)
Bell Lab
6
Texas Instrument
IMS, 26 Nov 2004
J. Bardeen and Brattain
Phys. Rev. 74, 230 (1948) (Letters to the editor)
7
IMS, 26 Nov 2004
How about heat?
Can we invent similar device to control heat?
Heat is more important than electricity for
human being and other forms of life.
8
IMS, 26 Nov 2004
Daily life experience
Energy saving materials
9
IMS, 26 Nov 2004
Electronic Industry
THE STRAITS TIMES: Tuesday, May 18, 2004
Efficient thermal remover/taker
for electronic chips
10
IMS, 26 Nov 2004
Defence
Cosy uniform
Infrared invisible materials
11
IMS, 26 Nov 2004
2. Diode: one way street
12
IMS, 26 Nov 2004
2. Thermal diode/Rectifier
13
IMS, 26 Nov 2004
2. Thermal diode/rectifier
TL
TR
Question:
Can we control heat flow in solid state device?
If TL > T R, heat flows from left to right.
If TL < T R, heat flow is inhibited from right to left.
14
IMS, 26 Nov 2004
2. Thermal diode/rectifier
15
IMS, 26 Nov 2004
Terraneo, Peyrard, and Casati
PRL 99, 094302 (2002)
|J+/J-|~ 1.7
16
IMS, 26 Nov 2004
New configuration?
T+
T-
T-
T+
17
IMS, 26 Nov 2004
Configuration of the diode model from
two coupled nonlinear oscillator chains
k R  k L , VR  VL
k R  k L , VR  VL
k R  k L , VR  VL
TL  T0 (1  , TR  T0 (1  )
18
IMS, 26 Nov 2004
Heat conduction properties of the FrenkelKontorova model (BH,BLi,HZ, PRE 57, 2992 (1998).
19
IMS, 26 Nov 2004
Heat conduction properties of the FrenkelKontorova model (BH,BLi,HZ, PRE 57, 2992 (1998).
20
IMS, 26 Nov 2004
Heat conduction properties of the FrenkelKontorova model (BH,BLi,HZ, PRE 57, 2992 (1998).
Temperature profile
For N=100,200, 300
dT/dx ~ 1/N
21
IMS, 26 Nov 2004
Heat conduction properties of the FrenkelKontorova model (BH,BLi,HZ, PRE 57, 2992 (1998)).
Heat current
J~ 1/N
Thermal Conductivity:
   J /(dT / dx)
 const.
22
IMS, 26 Nov 2004
Phonon band of the Frenkel-Kontorova model
•
Low temperature limit:
•
High temperature limit:
•
Maximal rectifying
efficiency:
23
IMS, 26 Nov 2004
24
IMS, 26 Nov 2004
I-V curve
(Li and Wang and Casati, PRL 93, 184301(2004)
T-
25
T+
T+
T-
IMS, 26 Nov 2004
(a) Heat current vs
coupling constant
(b) Temperature
profile
26
IMS, 26 Nov 2004
Heat current versus
the ratio of two lattice constants
kint  0.05
kint  0.2
kR  kL , VR  VL
27
IMS, 26 Nov 2004
Finite size effect

R  R  Rint
,
R  N /
J   (TL  TR ) / R
28
IMS, 26 Nov 2004
Transistor: witching and Amplification
1. Bipolar Transistor (Barden and Brattain)
29
IMS, 26 Nov 2004
MOSFET
VD(+)
D(Drain)
ID
IG
VG
G(Gate)
IG≈ 0,
IS
I D ≈ IS
S(Source)
VS(-)
30
IMS, 26 Nov 2004
How to build a thermal transistor ?
To
TS
TD
JD
JG
TG
J
Differentil thermal resistance:
JS
JD
TS
31
TD
T0~TG
IMS, 26 Nov 2004
How to build a thermal transistor?
Current amplification:
The thermal transistor never works !!!
32
IMS, 26 Nov 2004
How to build a thermal transistor?
Think something differently!!!
How about if one of the
thermal resistance
is negative?
33
JD
JS
T0~TG
IMS, 26 Nov 2004
Negative differential thermal resistance /conductance
34
IMS, 26 Nov 2004
III Negative Differential
Thermal Resistance/Conductance (BLi et al. cond-mat/0410172)
35
IMS, 26 Nov 2004
III. Negative differential thermal resistance/conductance:
The physical mechanism (BLi et al. cond-mat/0410172)
36
IMS, 26 Nov 2004
IV. Thermal transistor: configuration
(BLi et al. cond-mat/0410172)
37
IMS, 26 Nov 2004
IV. Thermal transistor: A switch
(BLi et al. cond-mat/0410172)
At the three points
TG=.04, .09, .14
JG=0
JD=2.4e-6, 1.1e-4,
2.3e-4
2.3e-4/2.4e-6~100
38
IMS, 26 Nov 2004
IV Thermal Transistor: Modulator/Amplifier
(BLi et al. cond-mat/0410172)
39
IMS, 26 Nov 2004
IV. Possible nanoscale experiment
Temperature (simulation):
T ~ (0.1 ~ 1)
Real temperature
Tr ~ (10 ~ 100K)
System size:
Simulation: N ~ (100-1000) Lattice sites
Real size: (10-100nm)
Possible nanomaterials: Nanotubes, Nanowires, Thin film ….
40
IMS, 26 Nov 2004
III Summary
•
Rectifying effect is very generic in nonlinear lattices.
• A thermal diode model is proposed.
• A thermal transistor model is built based on the
negative differential thermal resistance.
• Physical mechanism for the thermal diode/transistor are
fully understood.
41
IMS, 26 Nov 2004
Heat conduction
Related Publications
1
B Li, L Wang, and G Casati, Phys. Rev. Lett. 94 (2005) (in press) cond-mat/0410172 (transistor)
2
B Li, L Wang, and G Casati, Phys. Rev. Lett. 93, 184301 (2004) (diode)
3
B Li, G Casati, J Wang, and T Prosen, Phys. Rev. Lett. 92, 254301 (2004)
4
J.-S Wang and B. Li, Phys. Rev. Lett. 92, 074302 (2004)
5
B Li and J Wang, Phys. Rev. Lett 92, 089402 (2004)
6
B Li and J Wang, Phys. Rev. Lett 91, 044301 (2003)
7
B Li, L Wang, and B Hu Phys. Rev. Lett 88, 223901 (2002)
8
B Li, H Zhao, and B Hu Phys. Rev. Lett 87, 069402 (2001)
9
B Li, H Zhao, and B Hu Phys. Rev. Lett. 86, 63 (2001)
1
B Li, J Wang, L Wang, and G Zhang, CHAOS (FPU’s 50th focus issue, 2005 March), cond-mat/0410355
2
G Zhang and B Li, Phys. Rev. B. cond-mat/0403393
3
G Zhang and B Li, Phys. Rev. E. cond-mat/0406498.
4
J.-S Wang and B Li, Phys. Rev. E 70, 021204 (2004)
5
B Li, G Casati, and J Wang, Phys. Rev. E 67, 021204 (2003)
6
B Hu, B Li and H Zhao, Phys. Rev. E 61, 3828 (2000)
7
B Hu, B Li, and H Zhao, Phys. Rev. E 57, 2992 (1998)
42
IMS, 26 Nov 2004
Thank You!
43
IMS, 26 Nov 2004