Todd Eckdahl - Davidson College
Download
Report
Transcript Todd Eckdahl - Davidson College
Using DNA Microarrays from
Multiple Species:
Comparisons for Teaching
Effectiveness
Todd T. Eckdahl
Biology Department
Missouri Western State College
Overview
Background
Courses using microarray technology
Species studied
Implementation
Results
Planned research projects
Missouri Western State College
Saint Joseph, Missouri
State-supported PUI
~5200 students
200 faculty
Biology Department
~340 majors
10 faculty
No graduate degree programs
New major in Biochemistry and Molecular Biology
Courses Using Microarray
Technology
BIO 431 Molecular Biology
4 credit course
3 hours lecture, 3 hours lab
Student majors
BMB, Biology with Health Sciences emphasis
BIO 313 Topics in Molecular Genetics
1 credit course
3 hours lab
Student majors
BMB, Biology-Health Sciences, Teaching
Functional Genomics
Technology
Microarrays
cDNAs printed
eg. Stanford yeast chips, UW E. coli chips
80-mer oligos printed
eg. ISB yeast chips
Labeling options
Indirect labeling
eg. Genisphere dendrimers
Direct incorporation
eg. Ulysis alexafluore labeling
Conducting Microarray
Experiments in a Course
Emphasize the “Big Picture”
Genomics, functional genomics, proteomics
Shift to data-rich science
Primary Literature
Brainstorming for ideas
Scheduling
Data Analysis
Presentations
Ideas for Yeast
Experiments
Glucose vs. Galactose vs. Fructose
vs. Maltose
Anaerobic vs. aerobic
Induction of sporulation
Heat Shock v. Cold Shock
Drug treatment
Minor Groove Binding Drugs
Anti-tumor properties
Conformational change in the 3D structure
of DNA
Prior Knowledge of MGBD/DNA
interaction
As models for minor
groove binding proteins
DAPI
Yeast Culture
OD at 660 nm to measure turbidity
Grown through log phase
4 hours of exposure to 10 uM DAPI
Control culture without DAPI
Isolation of RNA
Sterile, RNase- free equipment and
workspace
Harvesting of yeast
Production of spheroblasts
Isolation of RNA via RNA spin
column
Elution of RNA
Quantify RNA with A260 / A280
Run RNA on denaturing agarose
Preparation of labeled
cDNA and hybridization
Reverse transcription of RNA
capture sequence incorporated
Label preparation
addition of Cy3 and Cy5 dendrimer
addition of capturing reagents
Add probe to slide, cover and
incubate at 55 C for 1-3 days
Experimental Summary
Yeast in log phase
untreated
10 uM DAPI
Total RNA
Total RNA
Reverse Txn
cDNA
cDNA
Red
fluorophore
Green
fluorophore
microarray
hybridization
Data
Acquisition
Post-hybe wash,
dry slide
Ship for
scanning
Receive data
Scanalyze
Submit to SMD
Microarray Controls
Empty or 3X SSC
Duplicate genes
Duplicate experiments
Cy3 and Cy5 dyes
Poly A
Genomic, Intron, tRNA
Example of induced gene
YBR012W-B, TyB Gag-Pol protein
TGAGAAGCTGTCATCGAAGTTAGAGGAAGCTGAAGTGCAAGGATTGATAA
TGTAATAGGATAATGAAACATATAAAACGGAATGAGGAATAATCGCAATA
TTAGTATGTAGAAATATAGATTCCATTTTGAGGATTCCTATATCCTCGAG
GAGAACTTCTAGTATATTCTGTATACCTAATATTATAGCCTTTATCAACA
ATG
Example of repressed
gene
YHR055C, copper-binding metallothionein
TTCCGCTGAACCGTTCCAGCAAAAAAGACTACCAACGCAATATGGATTGT
CAGAATCATATAAAAGAGAAGCAAATAACTCCTTGTCTTGTATCAATTGC
ATTATAATATCTTCTTGTTAGTGCAATATCATATAGAAGTCATCGAAATA
GATATTAAGAAAAACAAACTGTACAATCAATCAATCAATCATCACATAAA
ATG
Analyses at Stanford
Microarray Database
Single spot or sequence
Data filtering
signal strength
R/G or G/R ratio
Linear regression comparison
Prepare data for clustering
Databases linked to SMD
SGD - Saccharomyces genome
database
Genbank
YPD - yeast protein database
Swissprot protein database
Ideas for E. coli Experiments
Metabolic shift
Osmotic stress
Growth curve effects
Heat Shock v. Cold Shock
Drug treatment
Effects of gene deletion
BIO 313 Experiment
E coli chips
M1655 sequenced strain
cDNA spotted
Putative transcriptional regulators
nusA deletion strain
yhbM deletion strain
Two channel hybridizations
Compare labeled RNA from wt versus deletion
E. coli culture
Overnight culture
Grown at 37°C to log phase
OD at 600 nm to measure turbidity
RNA Isolation
Sterile, RNase-free equipment and
work area
Total RNA SafeKit
Total RNA Safe protocol used
Lysis of E. coli done with mixture of
TE and lysozyme
RNA Isolates
Measure A260 / A280
Check on denaturing
agarose gel
Labeling
Labeling of isolated RNA done by use
of ULYSIS Nucleic Acid Direct
Labeling Kit
ULYSIS protocol followed
Fluorescent Dyes: Alexa Fluor 546
(green) and Alexa Fluor 660 (red)
Hybridization
Microarray prehybridized
Labeled RNA mixed together in
hybridization buffer and added to
slide
Hyb at 55 C in dry incubator
overnight
Post-hyb washes
Microarray Controls
Empty or 3X SSC
Duplicate genes
Duplicate experiments
Cy3 and Cy5 dyes
Genomic
Examples of Results
asr
flhC
emrY
Examples
Induced
Asr, G1787881
acid shock protein
Repressed
flhC, G1788201
regulator of flagellar biosynthesis acting on class 2
operons
Non-responsive
emrY, G1788710
multidrug resistance protein Y
putative transport
Example of induced gene
Asr, G1787881
gatca agactactattattggtagctaaatttcccttaagtcac
aatacgttattatcaacgctgtaatttattcagcgtttg
tacatatcgttacacgctgaaaccaaccactcacggaag
tctgccattcccagggatatagttatttcaacggccccg
cagtggggttaaatgaaaaaacaaattgagggtatgaca
1 - atg aaa aaa gta tta gct ctg gtt gtt gcc
31 - gct gct atg ggt ctg tct tct gcc gcc ttt
61 - gct gca gag act acg acc aca cct gct ccg
91 - act gcg acg acc acc aaa gca gcg ccg gcg
Example of repressed
gene
flhC, G1788201
ccgca aatggttaagctggcagaaaccaatcaactggtttgtca
cttccgttttgacagccaccagacgattactcagttgac
gcaagattcccgcgttgacgatctccagcaaattcatac
cggcatcatgctctcaacacgcttgctgaatgatgttaa
tcagcctgaagaagcgctgcgcaagaaaagggcctgatc
1 - atg agt gaa aaa agc att gtt cag gaa gcg
31 - cgg gat att cag ctg gca atg gaa ttg atc
61 - acc ctg ggc gct cgt ttg cag atg ctg gaa
91 - agc gaa aca cag tta agt cgc gga cgc ctg
Example of non-responsive
gene
emrY, G1788710
gaact catggaacaccccttgcgtattggtttatcgatgacagc
aactattgatacgaagaacgaagacattgccgagatgcc
tgagctggcttcaaccgtgacctccatgccggcttatac
cagtaaggctttagttatcgataccagtccgatagaaaa
agaaattagcaacattatttcgcataatggacaacttta
1 - atg gca atc act aaa tca act ccg gca cca
31 - tta acc ggt ggg acg tta tgg tgc gtc act
61 - att gca ttg tca tta gcg aca ttt atg caa
91 - atg ttg gat tcc act att tct aac gtc gca
Microarrays in Courses:
Lessons Learned
Advance planning essential
Controls for critical steps
Reliability and Reproducibility
Do Controls Make Sense?
Do Results Make Sense?
Potential for large amounts of data
means extensive analysis time
needed
Ongoing and Planned
Research Projects
Measure Effects of
Minor Groove
Binding Drugs on
Gene Expression in
Yeast
Measure Effects of
Minor Groove
Binding Drugs on
Gene Expression in
Human Tumor Cells
in Culture
Big Ideas
Sequence and structural
requirements for MGBD binding
A+T rich sequences
DNA bending
Determination of optimal binding sites
Effects of MGBDs on gene expression
Preliminary data using RT-PCR
Global patterns of gene expression
Complementary in vitro and in vivo
approaches
Acknowledgements
Genome Consortium for Active
Teaching
Malcolm Campbell, Davidson College
NSF DBI 0099720 MUE grant
Dr. Barbara Dunn, Stanford
University
Dr. Fred Blattner lab, UW-Madison
Dr. Bob Getts, Genisphere, Inc.
Missouri Western Students