Science AMANDA and IceCube

Download Report

Transcript Science AMANDA and IceCube

Neutrino astronomy
with
AMANDA and
IceCube
Per Olof Hulth
Stockholm University
[email protected]
Short summary of neutrinos
for pedestrians

There are three different “families” of
leptons




Electron neutrino (e) and the electron (e-)
Muon neutrino () and the muon (-)
Tau neutrino () and the tau (-)
The neutrinos penetrates huge amount of
matter without being absorbed

02-10-31
E.g. a 1 MeV neutrino from the sun has an
absorption length of 20 light years in lead!!
Per Olof Hulth
Stockholm university
Some neutrino numbers

The Sun sends every second out
200.000.000.000.000.000.000.000.000.000.000.000.000 (2*1038)
neutrinos

At Earth we receive about 40.000.000.000 neutrinos/cm2/second

From Big Bang we have 330 000 000 neutrinos/m3 (Energi 0.0004 eV)
but only half a proton

340 000 000 neutrinos are creataed in our body every day (40K)
02-10-31
Per Olof Hulth
Stockholm university
Neutrinos from Supernova

When a star
explodes 99% of
the energy is
emitted in neutrinos

A star exploded
1054. Today the
Crab nebula
02-10-31
Per Olof Hulth
Stockholm university
Gamma astronomy

   Backgnd  e  e
-
Space is not
transparent for
High Energy
Photons!
R. Svensson Zdziarski AA.Ap.J.349:415-28(1990)
02-10-31
Per Olof Hulth
Kneiski TM, Mannerheim K, Hartmann D.Ap.J.
Submitted 2000)
Stockholm university
Three open questions in
Astrophysics



What is the missing dark matter in the
Universe?
What is the origin of the Highest Energy
Cosmic rays?
What is powering the Gamma Ray Bursts
(GRB)?
02-10-31
Per Olof Hulth
Stockholm university
You need 20 times
more matter to keep
the system together
than what is
observed
DARK MATTER
!!!!
02-10-31
Per Olof Hulth
Stockholm university
Most popular model



New type of matter (WIMPs)
Supersymmetric particles from Big Bang
Neutralinos.
02-10-31
Per Olof Hulth
Stockholm university
WIMPs from Sun/Earth
Dark Matter search
Look for excess of neutrinos from
centre of the Earth and the Sun!!
02-10-31
Per Olof Hulth
Stockholm university
Cosmic rays
mesoner
muons
About 100 muons/m2sek
02-10-31
Per Olof Hulth
Stockholm university
Cosmic rays
Energies up to 50 Joules!
What is the process
creating these
particles???
02-10-31
Per Olof Hulth
Stockholm university
A possible candidate for a source for
cosmic rays
02-10-31
Per Olof Hulth
Stockholm university
Gamma Ray Bursts
Source 9 Billion
light years away!
The sources of GRBs on
cosmologic distances!
The most “violent”
objects in the Universe
02-10-31
Per Olof Hulth
Stockholm university
Gamma Ray Bursts

Could be danger to
be too close…
02-10-31
Per Olof Hulth
Stockholm university
Messengers of Astronomy
Only neutrinos cover the whole energy range
02-10-31
Per Olof Hulth
Stockholm university
Neutrino production

p   
p   0  p  2


n    n   
   e      e
If protons are accelerated we expect about
equal amount of gammas and neutrino!!
02-10-31
Per Olof Hulth
Stockholm university
Classes of Models
log(E2  Flux)
pp core AGN
p blazar jet
Top-Bottom
model
Various recent
models for
transient sources
GRB
(W&B)
02-10-31
3
6
9
TeV
PeV
EeV
Per Olof Hulth
Stockholm university
log(E/GeV)
Neutrino astronomy so far




Only two neutrino sources in space has
been observed.
The solar neutrinos (Nobel price 2002)
Neutrinos from SN1987 in the Large
Magellanic Cloud (180 000 light years)
Energy of neutrinos only 1-30 MeV
02-10-31
Per Olof Hulth
Stockholm university
Neutrino physics (again)
We have three types of neutrinos:
e
Electron neutrino
Muon neutrino

Tau neutrinon

E.g. Neutron decay :
neutron -> proton + e- + e
02-10-31
Per Olof Hulth
Stockholm university
Neutrino interaction

< 1 degree
The muon can travel
several km in e.g. ice
02-10-31
Per Olof Hulth
Stockholm university
Cherenkov radiation
A charged particle
moving with the
speed of light in the
medium will generate
a shock wave of light
q
cosq=1/(nb)
b=v/c, n= refraction index
02-10-31
Per Olof Hulth
Stockholm university
The AMANDA telescope at the
South Pole
Why the South Pole?
A 3000 meter thick glaciar
A scientific base with all infra structure
No fishes and no 40K
02-10-31
Per Olof Hulth
Stockholm university
AMANDA
02-10-31
Per Olof Hulth
Stockholm university
South Pole
02-10-31
Per Olof Hulth
Stockholm university
02-10-31
Per Olof Hulth
Stockholm university
02-10-31
Per Olof Hulth
Stockholm university
Joakim Edsjö SU
02-10-31
Per Olof Hulth
Stockholm university
Joakim Edsjö SU
02-10-31
Per Olof Hulth
Stockholm university
106 muons
from cosmic
rays/muon
from
neutrinos
!!!!
Select only
muons from
below!!!!
02-10-31
Per Olof Hulth
Stockholm university
Hot water heaters
-50 m
-55 C
-2400 m
02-10-31
Per Olof Hulth
-25 C
Stockholm university
02-10-31
Per Olof Hulth
Stockholm university
Joakim Edsjö SU
02-10-31
Per Olof Hulth
Stockholm university
-840 m
02-10-31
Per Olof Hulth
Stockholm university
AMANDA
Year
Detector
1995/1996
AMANDA-B4
Total
number of
OM
86
1996/1997 AMANDA-B10
302
1998/1999 AMANDA-B13
428
1999/2000
680
02-10-31
AMANDA-II
Per Olof Hulth
Stockholm university
02-10-31
Per Olof Hulth
Stockholm university
DATA
AMANDA
Event
Signatures:
Muons
CC muon neutrino
interactions  Muon tracks
02-10-31
 + N   + X
Per Olof Hulth
Stockholm university
Point Sources Amanda II (2000)
Skyplot is scrambled in
event time for blind analysis,
Plot has been released, and
results will be available soon.
Examples for a few candidates will
be given.
Equatorial coordinates:
declination vs. right ascension.
02-10-31
Per Olof Hulth
Stockholm university
AMANDA B10 and A-II:
  cm-2 s-1
some limits and projected sensitivity
10-13
10
AMANDA B10 average
Sensitivity for sel. soruces
To appear in ApJ:
astro-ph/0208006
-14
A-II, limit on SS433
A-II, sensitivity on SS433
MACRO
10-15
SS433*
A-II projected sensitivity
Combined 97-02
-90
-45
0
A-II, limit on Mrk 501
45
Declination (deg)
02-10-31
Per Olof Hulth
Stockholm university
90
Mrk501
(HEGRA 97, /=1)
Amanda Analysis activities
•AMANDA-B10 1997 analysis at the end
•AMANDA-B10 1999 analysis started
•AMANDA-II 2000 filtering done, first analyses started
•AMANDA-II 2001 online filtering continuously done
In order to do a “blind analysis” only 20% of
the data is used for tuning cuts
02-10-31
Per Olof Hulth
Stockholm university
IceCube!!
IceCube has been designed as a
discovery instrument with improved:
telescope area
detection volume
energy measurement of secondary muons and
electromagnetic showers
identification of neutrino flavor
angular resolution
02-10-31
Per Olof Hulth
Stockholm university
The IceCube Collaboration
11 European, 1 Japanese, 1 South American and 11 US Institutions
(many of them are also AMANDA member institutions)
1.
Bartol Research Institute, University of Delaware, Newark, USA
2.
BUGH Wuppertal, Germany
3.
Universite Libre de Bruxelles, Brussels, Belgium
4.
Dept. of Physics, Chiba University, Japan
5.
CTSPS, Clark-Atlanta University, Atlanta USA
6.
DESY-Zeuthen, Zeuthen, Germany
7.
Imperial College, London, UK
8.
Institute for Advanced Study, Princeton, USA
9.
Dept. of Technology, Kalmar University, Kalmar, Sweden
10.
Lawrence Berkeley National Laboratory, Berkeley, USA
11.
Dept. of Physics, Southern University and A\&M College, Baton Rouge, LA, USA
12.
Dept. of Physics, UC Berkeley, USA
13.
Institute of Physics, University of Mainz, Mainz, Germany
14.
Dept. of Physics, University of Maryland, USA
15.
University of Mons-Hainaut, Mons, Belgium
16.
Dept. of Physics, Pennsylvania State University, University Park, PA, USA
17.
Dept. of Physics, Simon Bolivar University, Caracas, Venezuela
18.
Dept. of Astronomy, Dept. of Physics, SSEC, University of Wisconsin, Madison, USA
19.
Physics Dept., University of Wisconsin, River Falls, USA
20.
Division of High Energy Physics, Uppsala University, Uppsala, Sweden
21.
Fysikum, Stockholm University, Stockholm, Sweden
22.
Dept. of Physics, University of Alabama, Tuscaloosa, USA
23.
Vrije Universiteit Brussel, Brussel, Belgium
Olof Hulth
02-10-31
24.
Utrecht, Holland (since 29th ofPer
October
2002) Stockholm university
IceCube:Top View
Grid
North
100 m
AMANDA
80 strings
60 modules/string
Volume 1 km3
Depth 1400-2400 m
Counting
House
South Pole
SPASE-2
Dome
Skiway
02-10-31
Per Olof Hulth
Stockholm university
IceTop
AMANDA
South Pole
Skiway
IceCube
80 Strings
4800 PMT
1400 m
2400 m
02-10-31
Per Olof Hulth
Stockholm university
 - flavors and energy ranges
Neutrino
flavor
Filled area:
particle id, angle,
energy
Shaded area:
energy and angle.

e
e

6
02-10-31
Per Olof Hulth
9
12 15 18
Log(ENERGY/eV)
Stockholm university
21
µ-events in IceCube
Eµ=10 TeV
Eµ=6 PeV
AMANDA-II
1 km
02-10-31
Measure energy by counting the number of fired PMT.
Olof Hulth Stockholm university
(This is a veryPersimple
but robust method)
Diffuse Fluxes: Predictions and Limits
Mannheim & Learned,
2000
Macro
Baikal
Amanda
IceCube
02-10-31
Per Olof Hulth
Stockholm university
1 pp core AGN (Nellen)
2 p core AGN
Stecker & Salomon)
3 p „maximum model“
(Mannheim et al.)
4 p blazar jets (Mannh)
5 p AGN
(Rachen & Biermann)
6 pp AGN (Mannheim)
7 GRB
(Waxman & Bahcall)
8 TD (Sigl)
Compare to Mrk 501 gamma rays
Field of view:
Continuous
2  sr
AMANDA B10
(northern sky)
prelim. limit
Sensitivity of
3 years of IceCube
02-10-31
Per Olof Hulth
Stockholm university
Neutrinos from Gamma Ray Bursts
Test signal: 1000 GRB a la Waxman/Bahcall 1999
Expected no. of events:
11 upgoing muon events
Expected background:
0.05 events
Sensitivity (1000 bursts):
0.2  dN/dE (Waxman/Bahcall 99)
Only 200 GRB needed to detect/rule out WB99 flux
02-10-31
Per Olof Hulth
Stockholm university
Cascade event
e + N --> e- + X
The length of the actual cascade, ≈
10 m, is small compared to the
spacing of sensors
1 PeV ≈ 500 m diameter
Fully active calorimeter with linear
energy resolution
Sensitivity for diffused flux about the same as for
muons
Per Olof Hulth Stockholm university
02-10-31
E = 375 TeV
“Double Bang”
 + N --> - + X
 + X
• E << 1 PeV: Single cascade
(2 cascades coincide)
• E ≈ 1 PeV: Double bang
• E >> 1 PeV: Second cascade +
tau track
02-10-31
Per Olof Hulth
Stockholm university
Tau neutrinos and oscillations
Enhanced role of tau neutrinos
because of neutrino oscillation!?
Cosmic beam: e = µ =  because of oscillations
 not absorbed by the Earth (regeneration)
Pile-Up near 1 PeV where ideal sensitivity
IceCube sensitive to m2>10-17 eV2
02-10-31
Per Olof Hulth
Stockholm university
Dark matter detection with IceCube
WIMPS from Earth
WIMPS from Sun
Ice3 will significantly improve the sensitivity!
02-10-31
Per Olof Hulth
Stockholm university
Supernova detection
• e + p
n + e+ (10-40 MeV)
•PMT noise increase due to the
positrons
• AMANDA/IceCube records
the noise of the PMTs over 0.5
sec and summing up total rate
over 10 sec intervals.
•Detectors to be connected to
Supernova Early Warning
System
AMANDA
IceCube
In addition to the MeV e neutrinos, 10-100 muon neutrinos are expected
after a few hours in the TeV energy range.
02-10-31
Per Olof Hulth
Stockholm university
Summary

IceCube will open a significant new
window on the Universe.

Hopefully we will observe something
which has not been discussed in this
presentation.
02-10-31
Per Olof Hulth
Stockholm university
Hotwater Drilling
Experience with AMANDA:
19 holes
Upgrade:from 2 to 5 MW
Projected time to 2450 m
depth: 40 h
Diameter: 50 cm
Drill 2 holes per week; 16
holes per season
02-10-31
Per Olof Hulth
QuickTime™ and a
Photo - JPEG decompressor
are needed to see this picture.
Stockholm university
Optical sensor
Installation of one
sensor: ≈10 min
02-10-31
QuickTime™ and a
Photo - JPEG decompressor
are needed to see this picture.
Per Olof Hulth
Stockholm university
02-10-31
Per Olof Hulth
Stockholm university
Mats Pettersson Gymnasielärare från Angereds gymnasium
Göteborg vid sydpolen 14 november 2001
02-10-31
Per Olof Hulth
Stockholm university
02-10-31
Per Olof Hulth
Stockholm university
02-10-31
Per Olof Hulth
Stockholm university
Joakim Edsjö SU
Joakim Edsjö SU
02-10-31
Per Olof Hulth
Stockholm university
02-10-31
Per Olof Hulth
Stockholm university
Joakim Edsjö SU
02-10-31
Per Olof Hulth
Stockholm university