Transcript Orbits

Orbits
• Read Your Textbook: Foundations of Astronomy
– Chapter 5
• Homework Problems
– Review Questions: 3, 4, 5, 9, 10
– Review Problems: 1, 3, 4
– Web Inquiries:
Kepler’s Laws
• I. Planets orbit the sun in ellipses with the sun located at one
focus point.
Ellipses
a (1-e) = closest approach
e = eccentricity
Ellipses
a (1- e) = closest approach (perihelion)
a (1+ e) = farthest away (aphelion)
Circle e = 0
radius = a
Ellipse e > 0
Kepler’s II Law
A Planet’s Orbital Vector Sweeps Out Equal Area
in Equal Intervals of Time
Equal Area in Equal Time
The time required to travel from point A’ to B’ is
equal to the time required to travel from A to B.
Angular Momentum
Angular Momentum L,
is the product of a planet's mass (m),
orbital velocity (v)
and distance from the Sun (R).
The formula is simple: L = m v R,
where R is a function of e, the eccentricity.
Kepler’s III Law
Period2/Distance3 = constant for any system
If the orbital period (P) is measured in years,
and the average distance (a) is measured in A.U.,
the constant for the solar system is 1.000.
P2 = a3
Closest Approach
For orbits around the Sun,
critical points are perihelion and aphelion.
The corresponding points for orbits around
the Earth are perigee and apogee.
The planetary orbital ellipses are very nearly circular.
(i.e. the eccentricity is nearly zero, Earth e = 0.03)
Circular orbits are a good approximation.
Circular Orbit Approximation
The Circular Velocity is the rate at which an
object would move in a circular orbit around
a given massive body.
Examples might be a satellite around the Earth
or a planet around the Sun.
The equation for circular velocity is:
Vcir= (GM/R)1/2
Centripetal Acceleration
a = v2  r
Centripetal Force
=ma
= m v2  r
Since velocity is a vector, even an object with constant
speed that does not travel in a straight line, must
experience an acceleration since acceleration is a
change in velocity. Velocity is a vector which
includes speed AND direction.
Two Types of Energy
Potential Energy
Kinetic Energy
Potential Energy
• The energy associated with an objects position
• The object has the potential to do WORK
• Work was done to give it this potential
Examples:
Ohh #$%*@!
Chop, Chop
Potential Energy
• The motor pulls the cart up against gravity
WORK = Force x distance
mg x height
Potential Energy
• The motor pulls the cart up against gravity
WORK = Force x distance
mg x height
• Muscles do work against the tension in the bow string
Potential Energy
• The motor pulls the cart up against gravity
WORK = Force x distance
mg x height
• Muscles do work against the tension in the bow string
• Muscles do work against gravity to lift the
axe above the ground
Potential Energy
• The roller coaster cart, the bow and the axe were all
given potential energy. The change in the potential energy
is identical to the work done.
• These objects now have the potential to do work and
convert that stored energy.
Kinetic Energy
• The energy associated with an objects motion.
KE = 1/2 m v2
m = mass
v = velocity
Without velocity, there is no KE
Chop, Chop
Energy
• When work is done, there is a change in energy.
• Energy is a conserved quantity, and remains
unchanged in a physical system.
• TOTAL ENERGY, not Kinetic Energy or Potential
Energy by themselves.
The Simple Pendulum
• The pendulum swings to and fro,
where it stops, conservation of energy knows.
TOTAL ENERGY = Potential Energy + Kinetic Energy
The Simple Pendulum
The total energy of this system is zero.
The Simple Pendulum
The total energy of this system is zero.
This simple pendulum could be the
sway in a grandfather clock,
a child on a swing,
a hypnotists watch, etc.
The Simple Pendulum
Suppose someone does work against
gravity to give it some potential energy?
The Simple Pendulum
Suppose someone does work against
gravity to give it some potential energy?
The work done = Force x Distance
Force = m g
Distance = h
The work done = potential energy gained
=mgh
h
The Simple Pendulum
The total energy of the system is
now (m g h), reflecting the work done
to the system.
h
What happens when we let go of the pendulum?
To and Fro
To and Fro
To and Fro
To and Fro
To and Fro
To and Fro
To and Fro
The pendulum swings
until it has reached the
same height on the other
side, before pausing to
oscillate back.
h
Total Energy
A projectile has an amount of kinetic energy given by
K.E. = 1/2 m V2
It has a potential energy relative to earth's surface of
P.E. = - mGM/R
The total energy is conserved so that
Total Energy = K.E. + P.E.
Total Energy = 1/2 m V2 - mGM/R
In order to escape earth's gravity you have to have
Total Energy > 0, so the critical point is when the
energy = 0.
Escape Velocity
The Escape Velocity is the velocity
an object (of ANY mass) must have in order to leave
the gravitational field of a massive body.
It depends on the total amount of energy an object has.
There is an escape velocity from the Earth's surface,
from the Sun's surface, even from the solar system,
and it depends on how massive that body is and
how far you are away from the body.
Escape Velocity
0 = 1/2 m V2 - mGM/R
V2/2 = GM/R
Vesc = (2GM/R)1/2
The escape velocity at the earth's
surface is = 11.2 km/sec.
Orbits
Object must have
kinetic energy
greater than the
gravitational
potential energy
needed to escape
the earth. The
velocity associated
with this kinetic
energy is the
escape velocity.
Escape Velocity and Orbits
Conic Section
Hyperbola
Parabola
Ellipse
Circle
Velocity
V > Vesc
V = Vesc
V < Vesc
V = Vcirc
e=0
e>0
e >> 0
Total Energy
>0
=0
<0
Minimum
Orbit
Unbound
1 pass
a(1-e), a(1+e)
a = radius