Introduction to Magnets IIx

Download Report

Transcript Introduction to Magnets IIx

JUAS
February 22nd 2016
Introduction to MAGNETS II
Davide Tommasini
Davide Tommasini
Title
Event/Date
Fundamentals 1 : Maxwell
D.Tommasini
Davide Tommasini
Introduction
Title to Magnets
JUAS February
22nd, 2016
Event/Date
CURL / ROTOR
The speed of water S is rotational around an axis determinined by a driving force F,
its amplitude depends on the distance from the axis and on the driving force .
Put in mathematics we get:
𝛻𝒙𝑺 = π’Œπ‘­
The curl of a vector field is the closed circulation field through an infinitesimal area
Remark: a whirlpool is turbulent, the analogy is for didactics purposes only
D.Tommasini
Davide Tommasini
Introduction
Title to Magnets
JUAS February
22nd, 2016
Event/Date
DIVERGENCE
The Divergence of a vector is the amount of flux of vector entering or leaving a point.
𝐹𝑙𝑒π‘₯𝑭
𝛻 βˆ™ 𝑭 = lim
π‘£π‘œπ‘™β†’0 π‘£π‘œπ‘™
π›»βˆ™π‘«=ρ
π›»βˆ™π‘Έβ‰ 0
This is the 1st Maxwell equation,
corresponding to the Gauss Law.
D.Tommasini
Davide Tommasini
Introduction
Title to Magnets
JUAS February
22nd, 2016
Event/Date
Basic Principles
A «magnetic field strength» 𝑯 is produced by electrical currents
1820 Hans Christian Ørsted
An electrical current produces a circular magnetic field around the wire
This discovery pushed scientists to understand the mathematics behind this evidence
D.Tommasini
Davide Tommasini
Introduction
Title to Magnets
JUAS February
22nd, 2016
Event/Date
Generating a magnetic field strength
πœ•π‘«
𝛻𝒙𝑯 = 𝑱 +
πœ•π‘‘
Ampère
Maxwell
1826 André-Marie Ampère
D.Tommasini
Davide Tommasini
1861 James Clerk Maxwell
Introduction
Title to Magnets
JUAS February
22nd, 2016
Event/Date
Let’s use this formula !
We consider
πœ•π‘«
πœ•π‘‘
=0
𝛻𝒙𝑯 = 𝑱
We recall that, thanks to the Kelvin – Stokes theorem the surface integral of the
curl of a vector field over a surface 𝑺 is equal to the line integral of the vector
field along its boundary πœ•π‘Ί :
𝛻𝒙𝑯 βˆ™ 𝑑𝑺 =
𝑆
D.Tommasini
Davide Tommasini
𝑯 βˆ™ 𝑑𝒍 =
πœ•π‘†
Introduction
Title to Magnets
𝑱 βˆ™ 𝑑𝒍 = 𝐈
πœ•π‘†
JUAS February
22nd, 2016
Event/Date
Let’s use this formula ! cont
𝑯 βˆ™ 𝑑𝒍 = 𝐈
πœ•π‘†
r
We consider the boundary along
the circumference at radius «r».
Keeping the same radius, due to
symmetry, H remains constant.
Hβˆ™ 𝟐 βˆ™ 𝝅 βˆ™ 𝒓 = 𝐈
H=
D.Tommasini
Davide Tommasini
Introduction
Title to Magnets
𝑰
πŸβˆ™π…βˆ™π’“
JUAS February
22nd, 2016
Event/Date
The Magnetic Field Induction
What produces the «effect» is the «magnetic field induction» 𝑩
𝑭 = π‘žπ’—π‘₯𝑩
The «magnetic field induction» is created by the «magnetic field strength»
In certain materials (ferromagnetic) we just need a small strength to
produce a large induction, in most materials we need a large strength to
produce a large induction. We define the following constitutive equation:
𝑩 = πœ‡0 πœ‡ π‘Ÿ 𝑯
πœ‡0 = 4πœ‹ βˆ™ 10βˆ’7 𝐻/π‘š
D.Tommasini
Davide Tommasini
Introduction
Title to Magnets
JUAS February
22nd, 2016
Event/Date
The Fantastic Four
π›»βˆ™π‘«=ρ
π›»βˆ™π‘©=0
Gauss law for electricity
Gauss law for magnetism
πœ•π‘©
𝛻𝒙𝑬 = βˆ’
πœ•π‘‘
πœ•π‘«
𝛻𝒙𝑯 = 𝑱 +
πœ•π‘‘
D.Tommasini
Davide Tommasini
Faraday-Lenz law of induction
Ampère law with correction
Introduction
Title to Magnets
JUAS February
22nd, 2016
Event/Date
Continuity conditions
𝛻𝒙𝑯 = 0
π›»βˆ™π‘©=0
n
The flux which enters shall be
equal to the flux which exits
The integral of the field
strength
𝐡βŠ₯ = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘
𝐻βˆ₯ = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘
D.Tommasini
Davide Tommasini
Introduction
Title to Magnets
JUAS February
22nd, 2016
Event/Date
Fundamentals 2 : Field Harmonics
D.Tommasini
Davide Tommasini
Introduction
Title to Magnets
JUAS February
22nd, 2016
Event/Date
Decomposition of magnetic field
In cartesian coordinates
𝑉π‘₯ = 0 ; 𝑉𝑦 = βˆ’π‘˜
𝑉 = 𝑉𝑦 + 𝑖𝑉π‘₯ = βˆ’π‘˜ + 𝑖0
r
j
In polar coordinates
π‘‰πœ‘ = βˆ’π‘˜π‘π‘œπ‘ πœ‘; π‘‰π‘Ÿ = βˆ’π‘˜π‘ π‘–π‘›πœ‘
In case of a combination of uniform vertical k and uniform horizontal field h we have:
𝑉 = 𝑉𝑦 + 𝑖𝑉π‘₯ = π‘˜ + 𝑖0 + 0 + π‘–β„Ž = π‘˜ + π‘–β„Ž
π‘‰πœ‘ = βˆ’π‘˜π‘π‘œπ‘ πœ‘ + β„Ž sin πœ‘ ; π‘‰π‘Ÿ = βˆ’π‘˜π‘ π‘–π‘›πœ‘ + β„Žπ‘π‘œπ‘ πœ‘
The coefficients caracterizing the vertical field (producing horizontal beam deflection)
are called «normal», the ones caracterizing the horizontal field are called «skew».
D.Tommasini
Davide Tommasini
Introduction
Title to Magnets
JUAS February
22nd, 2016
Event/Date
To go ahead we need … The Potential
Since the divergence of a curl is zero, we can define a vector potential 𝑨 such that:
𝛻 βˆ™ 𝑩 = 𝛻 βˆ™ (𝛻𝒙𝑨) =0
With then:
𝑩 = 𝛻𝒙𝑨
In air, as 𝑩 = πœ‡0 𝑯:
πœ‡0 𝑱 = 𝛻𝒙𝑩 = 𝛻𝒙 𝛻𝒙𝑨 = βˆ’π›» 2 𝑨
In air, in a volume with no currents:
𝛻2𝑨 = 0
D.Tommasini
Davide Tommasini
Introduction
Title to Magnets
JUAS February
22nd, 2016
Event/Date
Why we need the (vector) potential
As 𝑩 = 𝛻π‘₯𝑨, in a 2D case (plane geometry) the only component of 𝑨 is 𝐴𝑧
𝛻 2 𝐴𝑧 = 0 in polar coordinates becomes:
2𝐴
2𝐴
πœ•
πœ•π΄
πœ•
𝑧
𝑧
𝑧
π‘Ÿ2
+
π‘Ÿ
+
=0
πœ•π‘Ÿ 2
πœ•π‘Ÿ
πœ•πœ‘2
r
r0
j
The solution of this equation is:
∞
π‘Ÿ 𝑛 (𝐢𝑛 sin π‘›πœ‘ + 𝐷𝑛 cos π‘›πœ‘)
𝐴𝑧 π‘Ÿ, πœ‘ =
𝑛=1
… and the field components are :
1 πœ•π΄π‘§
π΅π‘Ÿ π‘Ÿ, πœ‘ =
=
π‘Ÿ πœ•πœ‘
πœ•π΄π‘§
π΅πœ‘ π‘Ÿ, πœ‘ = βˆ’
=βˆ’
πœ•π‘Ÿ
∞
π‘›π‘Ÿ π‘›βˆ’1 (𝐢𝑛 cos π‘›πœ‘ βˆ’ 𝐷𝑛 sin π‘›πœ‘)
𝑛=1
∞
π‘›π‘Ÿ π‘›βˆ’1 (𝐢𝑛 sin π‘›πœ‘ + 𝐷𝑛 cos π‘›πœ‘)
𝑛=1
For a further insight I recommend checking the Feynman Lectures on Physics,
now «free to read online» at http://www.feynmanlectures.caltech.edu
D.Tommasini
Davide Tommasini
Introduction
Title to Magnets
JUAS February
22nd, 2016
Event/Date
Field Harmonics
«normal» dipole component
𝑛 = 1: π·π‘–π‘π‘œπ‘™π‘’
π΅π‘Ÿ π‘Ÿ, πœ‘ =
=
π΅π‘Ÿ π‘Ÿ, πœ‘ = βˆ’π΅1 sin πœ‘
𝐢1 cos πœ‘ βˆ’ 𝐷1 sin πœ‘
𝐴1 cos πœ‘ βˆ’ 𝐡1 sin πœ‘
π΅πœ‘ π‘Ÿ, πœ‘ = βˆ’π΅1 cos π‘›πœ‘
π΅π‘šπ‘œπ‘‘ π‘Ÿ, πœ‘ = 𝐡1
π΅πœ‘ π‘Ÿ, πœ‘ = βˆ’(𝐢1 sin π‘›πœ‘ + 𝐷1 cos π‘›πœ‘)
= βˆ’(𝐴1 sin π‘›πœ‘ + 𝐡1 cos π‘›πœ‘)
«normal» quadrupole component normalized at π‘Ÿ0
𝑛 = 2: Quadrupole
π΅π‘Ÿ π‘Ÿ, πœ‘ =
=
W𝑒 𝑑𝑒𝑓𝑖𝑛𝑒 𝐡2 @π‘Ÿ0 = π‘Ÿ0 2𝐷2
π‘Ÿ
π΅π‘Ÿ π‘Ÿ, πœ‘ = βˆ’ 𝐡2 sin 2πœ‘
π‘Ÿ0
π‘Ÿ
π΅πœ‘ π‘Ÿ, πœ‘ = βˆ’ 𝐡2 cos 2πœ‘
π‘Ÿ0
1
2π‘Ÿ 𝐢2 cos 2πœ‘ βˆ’ 𝐷2 sin 2πœ‘
π‘Ÿ 1
π‘Ÿ0
(𝐴2 cos 2πœ‘ βˆ’ 𝐡2 sin 2πœ‘)
π΅πœ‘ π‘Ÿ, πœ‘ = βˆ’2π‘Ÿ1 (𝐢2 sin 2πœ‘ + 𝐷2 cos 2πœ‘)
π‘Ÿ 1
=βˆ’
π‘Ÿ0
W𝑒 π‘Žπ‘™π‘ π‘œ 𝑑𝑒𝑓𝑖𝑛𝑒
(𝐴2 sin 2πœ‘ + 𝐡2 π‘π‘œπ‘  2πœ‘)
π΅π‘Ÿ π‘Ÿ, πœ‘ =
=
3π‘Ÿ
π‘Ÿ 2
π‘Ÿ0
𝐢3 cos 3πœ‘ βˆ’ 𝐷3 sin 3πœ‘
(𝐴3 cos 3πœ‘ βˆ’ 𝐡3 sin 3πœ‘)
π‘Ÿ 2
π‘Ÿ0
(𝐴3 sin 3πœ‘ + 𝐡3 cos 3πœ‘)
βˆ—
D.Tommasini
Davide Tommasini
𝐡
𝐡2
=
π‘Ÿ
π‘Ÿ0
W𝑒 𝑑𝑒𝑓𝑖𝑛𝑒 𝐡3 @π‘Ÿ0 = π‘Ÿ02 3𝐷3
π‘Ÿ2
π΅π‘Ÿ π‘Ÿ, πœ‘ = βˆ’ 2 𝐡3 sin 2πœ‘
π‘Ÿ0
π‘Ÿ2
π΅πœ‘ π‘Ÿ, πœ‘ = βˆ’ 2 𝐡3 cos 2πœ‘
π‘Ÿ0
𝐡
𝐡3
βˆ—
W𝑒 π‘Žπ‘™π‘ π‘œ 𝑑𝑒𝑓𝑖𝑛𝑒 𝑆 = 2 = 2
π‘Ÿ
π‘Ÿ0
π΅πœ‘ π‘Ÿ, πœ‘ = βˆ’3π‘Ÿ 2 𝐢3 sin 3πœ‘ + 𝐷3 cos 3πœ‘
=βˆ’
𝐺=
«normal» sextupole component normalized at π‘Ÿ0
𝑛 = 3: 𝑆𝑒π‘₯π‘‘π‘’π‘π‘œπ‘™π‘’
2
βˆ—
for practical reasons I prefer a definition with no sign to avoid misunderstanding
Introduction
Title to Magnets
JUAS February
22nd, 2016
Event/Date
Warning on the Sextupole Component
W𝑒 𝑑𝑒𝑓𝑖𝑛𝑒 𝐡3 @π‘Ÿ0 = π‘Ÿ02 3𝐷3
π‘Ÿ2
π΅π‘Ÿ π‘Ÿ, πœ‘ = βˆ’ 2 𝐡3 sin 2πœ‘
π‘Ÿ0
π‘Ÿ2
π΅πœ‘ π‘Ÿ, πœ‘ = βˆ’ 2 𝐡3 cos 2πœ‘
π‘Ÿ0
𝐡
𝐡3
W𝑒 π‘Žπ‘™π‘ π‘œ 𝑑𝑒𝑓𝑖𝑛𝑒 𝑆 = 2 = 2
π‘Ÿ
π‘Ÿ0
When you reconstruct the field amplitude as a function of the radius you obtain:
For a quadrupole, using the gradient «G»: 𝐡 = πΊπ‘Ÿ
: 𝐡 = π‘†π‘Ÿ 2
For a sextupole, using «S»
However, if you express the magnetic field by a polynomial expansion:
For a quadrupole : 𝐡 =
For a sextupole
: 𝐡 =
πœ•π΅
π‘Ÿ
πœ•π‘Ÿ
= πΊπ‘Ÿ , so there is no uncertitude of what is G
πœ•2 𝐡 2
π‘Ÿ
πœ•π‘Ÿ 2
= 2π‘†π‘Ÿ 2 β‰  π‘†π‘Ÿ 2
Above the quadrupole, always cross check the definition: best is to specify the
the field amplitude at a refence radius (which means you specify 𝐡3π‘Ÿ0 )
D.Tommasini
Davide Tommasini
Introduction
Title to Magnets
JUAS February
22nd, 2016
Event/Date
Relative Field Harmonics
When you have a real magnet of a specific type, you wish it produces that given type of
harmonic only, but you will get also other harmonics, more or less large.
We define «relative field harmonic» the ratio between that field harmonic and the reference
field harmonic expressed in units of 10βˆ’4 of the main harmonic, at a reference radius π‘Ÿ0 .
𝑏𝑖 =
𝐡𝑖
104
π΅π‘Ÿπ‘’π‘“
Exercice 1: on a «normal» quadrupole with gradient 𝐺 = 50 𝑇/π‘š , we measure at a radius
of π‘Ÿ0 = 10 π‘šπ‘š a «skew» dipole field of 10 πΊπ‘Žπ‘’π‘ π‘  and a «normal» sextupole field of 25 πΊπ‘Žπ‘’π‘ π‘ 
Compute the relevant field harmonics in units of 10βˆ’4
Solution :
𝐡2 = πΊπ‘Ÿ0 = 0.5 𝑇 = 5000 πΊπ‘Žπ‘’π‘ π‘ 
π‘Ž1 =
𝐴1 4
10 = 20 𝑒𝑛𝑖𝑑𝑠
𝐡2
𝐡3 4
𝑏3 =
10 = 50 𝑒𝑛𝑖𝑑𝑠
𝐡2
D.Tommasini
Davide Tommasini
Introduction
Title to Magnets
JUAS February
22nd, 2016
Event/Date
Scaling of Relative Field Harmonics
1 πœ•π΄π‘§
π΅π‘Ÿ π‘Ÿ, πœ‘ =
=
π‘Ÿ πœ•πœ‘
∞
πœ•π΄π‘§
π΅πœ‘ π‘Ÿ, πœ‘ = βˆ’
=βˆ’
πœ•π‘Ÿ
π‘›π‘Ÿ π‘›βˆ’1 (𝐢𝑛 cos π‘›πœ‘ βˆ’ 𝐷𝑛 sin π‘›πœ‘)
𝑛=1
∞
π‘›π‘Ÿ π‘›βˆ’1 (𝐢𝑛 sin π‘›πœ‘ + 𝐷𝑛 cos π‘›πœ‘)
𝑛=1
Let’s consider the dependency vs radius of a given field harmonic amplitude, does not matter normal or skew
𝐻𝑛 = π‘˜π‘Ÿ π‘›βˆ’1
The field harmonic relative to a «reference order m» scales as:
π‘Ÿ
π‘Ÿ
β„Žπ‘› (π‘Ÿ) = β„Žπ‘› (π‘Ÿ0 ) 0
π‘Ÿ
π‘Ÿ0
π‘›βˆ’1
π‘šβˆ’1
π‘Ÿ
= β„Žπ‘› (π‘Ÿ0 )
π‘Ÿ0
π‘›βˆ’π‘š
Exercice 2: scale the field harmonics of Exercice 1 to a radius of π‘Ÿ = 20 π‘šπ‘š
Solution :
20
π‘Ž1 20 π‘šπ‘š = 20 𝑒𝑛𝑖𝑑𝑠 π‘₯ ( )1βˆ’2 = 10 𝑒𝑛𝑖𝑑𝑠
10
20
𝑏3 20 π‘šπ‘š = 50 𝑒𝑛𝑖𝑑𝑠 π‘₯ ( )3βˆ’2 = 100 𝑒𝑛𝑖𝑑𝑠
10
D.Tommasini
Davide Tommasini
Introduction
Title to Magnets
JUAS February
22nd, 2016
Event/Date
Thanks
Davide Tommasini
Title
Event/Date