up11_educue_ch04

Download Report

Transcript up11_educue_ch04

Q4.1
You are standing at rest and begin to walk forward. What
force pushes you forward?
1. the force of your feet on your ground
2. the force of your acceleration
3. the force of your velocity
4. the force of your momentum
5. the force of the ground on your feet
A4.1
You are standing at rest and begin to walk forward. What
force pushes you forward?
1. the force of your feet on your ground
2. the force of your acceleration
3. the force of your velocity
4. the force of your momentum
5. the force of the ground on your feet
Q4.2
An apple sits at rest on a horizontal
table top.
The gravitational force on the apple
(its weight) is one half of an actionreaction pair. What force is the other
half?
1. the force of the Earth’s gravity on the apple
2. the upward force that the table top exerts on the apple
3. the upward force that the apple exerts on the Earth
4. the downward force that the apple exerts on the table top
5. the frictional force between the apple and the table top
A4.2
An apple sits at rest on a horizontal
table top.
The gravitational force on the apple
(its weight) is one half of an actionreaction pair. What force is the other
half?
1. the force of the Earth’s gravity on the apple
2. the upward force that the table top exerts on the apple
3. the upward force that the apple exerts on the Earth
4. the downward force that the apple exerts on the table top
5. the frictional force between the apple and the table top
Q4.3
An apple sits at rest on a horizontal
table top.
The weight of the apple is equal to
the magnitude of the upward force
that the table top exerts on the apple.
Why?
1. this is a consequence of Newton’s first law
2. this is a consequence of Newton’s third law
3. because we assume that the table top is perfectly rigid
4. two of the above three statements are correct
5. all of the first three statements are correct
A4.3
An apple sits at rest on a horizontal
table top.
The weight of the apple is equal to
the magnitude of the upward force
that the table top exerts on the apple.
Why?
1. this is a consequence of Newton’s first law
2. this is a consequence of Newton’s third law
3. because we assume that the table top is perfectly rigid
4. two of the above three statements are correct
5. all of the first three statements are correct
Q4.4
A woman pulls on a 6.00-kg crate, which in turn is connected
to a 4.00-kg crate by a light rope. The light rope remains taut.
Compared to the 6.00–kg crate, the lighter 4.00-kg crate
1. is subjected to the same net force and has the same acceleration
2. is subjected to a smaller net force and has the same acceleration
3. is subjected to the same net force and has a smaller acceleration
4. is subjected to a smaller net force and has a smaller acceleration
5. none of the above
A4.4
A woman pulls on a 6.00-kg crate, which in turn is connected
to a 4.00-kg crate by a light rope. The light rope remains taut.
Compared to the 6.00–kg crate, the lighter 4.00-kg crate
1. is subjected to the same net force and has the same acceleration
2. is subjected to a smaller net force and has the same acceleration
3. is subjected to the same net force and has a smaller acceleration
4. is subjected to a smaller net force and has a smaller acceleration
5. none of the above
Q4.5
You are pushing a 1.00-kg
food tray through the
cafeteria line with a
constant 9.0-N force. As
the tray moves, it pushes
on a 0.50-kg milk carton.
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
If the food tray and milk carton move at constant speed,
1. the tray exerts more force on the milk carton than the milk carton
exerts on the tray
2. the tray exerts less force on the milk carton than the milk carton
exerts on the tray
3. the tray exerts as much force on the milk carton as the milk
carton exerts on the tray
A4.5
You are pushing a 1.00-kg
food tray through the
cafeteria line with a
constant 9.0-N force. As
the tray moves, it pushes
on a 0.50-kg milk carton.
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
If the food tray and milk carton move at constant speed,
1. the tray exerts more force on the milk carton than the milk carton
exerts on the tray
2. the tray exerts less force on the milk carton than the milk carton
exerts on the tray
3. the tray exerts as much force on the milk carton as the milk
carton exerts on the tray
Q4.6
You are pushing a 1.00-kg
food tray through the
cafeteria line with a
constant 9.0-N force. As
the tray moves, it pushes
on a 0.50-kg milk carton.
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
If the food tray and milk carton are accelerating to the left,
1. the tray exerts more force on the milk carton than the milk carton
exerts on the tray
2. the tray exerts less force on the milk carton than the milk carton
exerts on the tray
3. the tray exerts as much force on the milk carton as the milk
carton exerts on the tray
A4.6
You are pushing a 1.00-kg
food tray through the
cafeteria line with a
constant 9.0-N force. As
the tray moves, it pushes
on a 0.50-kg milk carton.
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
If the food tray and milk carton are accelerating to the left,
1. the tray exerts more force on the milk carton than the milk carton
exerts on the tray
2. the tray exerts less force on the milk carton than the milk carton
exerts on the tray
3. the tray exerts as much force on the milk carton as the milk
carton exerts on the tray
Q4.7
Two crates, A and B, sit at rest sideby-side on a frictionless horizontal
surface. You apply a horizontal
force to crate A as shown.
Which statement is correct?
1. the acceleration has a greater magnitude than if B were in the
back and A were in the front
2. the acceleration has a smaller magnitude than if B were in the
back and A were in the front
3. the crates will not move if the force magnitude F is less than
the combined weight of the two crates
4. two of the above three statements are correct
5. none of the first three statements is correct
A4.7
Two crates, A and B, sit at rest sideby-side on a frictionless horizontal
surface. You apply a horizontal
force to crate A as shown.
Which statement is correct?
1. the acceleration has a greater magnitude than if B were in the
back and A were in the front
2. the acceleration has a smaller magnitude than if B were in the
back and A were in the front
3. the crates will not move if the force magnitude F is less than
the combined weight of the two crates
4. two of the above three statements are correct
5. none of the first three statements is correct
Q4.8
A horse is hitched to a wagon. Which statement is correct?
1. the force the horse exerts on the wagon is greater than
the force that the wagon exerts on the horse
2. the force the horse exerts on the wagon is less than the
force that the wagon exerts on the horse
3. the force the horse exerts on the wagon is just as strong
as the force that the wagon exerts on the horse
4. the answer depends on the velocity of horse and wagon
5. the answer depends on the acceleration of horse and
wagon
A4.8
A horse is hitched to a wagon. Which statement is correct?
1. the force the horse exerts on the wagon is greater than
the force that the wagon exerts on the horse
2. the force the horse exerts on the wagon is less than the
force that the wagon exerts on the horse
3. the force the horse exerts on the wagon is just as strong
as the force that the wagon exerts on the horse
4. the answer depends on the velocity of horse and wagon
5. the answer depends on the acceleration of horse and
wagon