Solid State III, Lecture 23
Download
Report
Transcript Solid State III, Lecture 23
Lecture 1 - Background from 1A
Revision of key concepts with application
to driven oscillators:
Aims:
Review of complex numbers:
Addition;
Multiplication.
Revision of oscillator dynamics:
Free oscillator - damping regimes;
Driven oscillator - resonance.
Concept of impedance.
Superposed vibrations.
1
Waves1
Complex representation
Complex nos. and the Argand diagram:
Use complex number A, where the real part
represents the physical quantity.
A Aoei a1 ia2
Amplitude
Phase
Amplitude follows from:
Phase follows from:
Ao2 a12 a22
tan a2 a1
Harmonic oscillation:
z Ae it Aoei t
Displacement
z Ae it
x z
Velocity
z i Ae it
x z Ao sin t
Accelerati on
z i 2 Ae it
x z 2 Ao cost
2
Ao cost
Waves1
Manipulation of Complex Nos. I
Addition
A Aoeio A1ei1 A2ei 2
Ao2 A12 A22 2 A1 A2 cos 2 1
A1 sin 1 A2 sin 2
tan o
A1 cos1 A2 cos 2
A Ao coso A1 cos1 A2 cos 2
The real part of the sum is the sum of the real
parts.
3
Waves1
Manipulation of Complex Nos. II
Multiplication
WARNING:
z1z2 z1 z2
One cannot simply multiply the two complex
numbers.
Example (i): To calculate (velocity)2 .
Take velocity v = Voeit with Vo real.
2
2
2
Instantaneous value: v Vo cos t
Mean value:
1
2
1
2
1
2
v 2 Vo2 vv v 2
Example (ii). Power, (Force . Velocity).
Take f = Foei(t+) with Fo real.
Instantaneous value:
f v FoVo cost cost
Mean value:
1
FoVo cos2t cos
2
1
1
FoVo cos fv
2
2
4
Waves1
The damped oscillator
Equation of motion
mx sx bx
Restoring force
1.1
Dissipation (damping)
Rearranging gives
x 2x o2 x 0
2 b m
o2 s m
1.2
Natural resonant frequency
Two independent solutions of the form x=Aept.
Substitution gives the two values of p, (i.e. p1,
p2), from roots of quadratic:
p 2 2p o2 0
p1 / 2 2 o2
General solution to [1.2]
x e t A1e qt A2e qt
q 2 2 o2
5
Waves1
Damping régimes
Heavy damping
q 2 0 or o
q t
A2e q t
x A1e
Sum of decaying exponentials.
2
Critical damping
q 0 or o
t
x
e
A1 A2t
Swiftest return to equilibrium.
Light damping
q i1, where 12 o2 ,
t
A1ei1t A2ei1t
xe
Damped vibration.
x0 0,
x 0 1, o 1
Heavy :
6
Critical : 1
Light :
6
0.02
Waves1
Driven Oscillator
Oscillatory applied force (frequency ):
Force:
f Feit
Equation of motion:
F
x 2x o2 x eit
m
Use complex variable, z, to describe
displacement: i.e. x z
F
z 2z o2 z eit
m
1.3
Steady state solution MUST be an oscillation at
it
frequency . So z Ae
A gives the magnitude and phase of the
“displacement response”. Substitute z into [1.3]
F
to get
2
2
A i 2 o
A
F m
o2 2 i 2
The “velocity response” is
z iAe it
m
.
F m
eit
2 o2
2 i
7
Waves1
Impedance
Mechanical impedance
Note, the velocity response is proportional to
the driving force, i.e.
Force =constant(complex) x velocity
Mechanical impedance
Z = force applied / velocity response
2 o2
Z m 2 i
In general it is complex and, evidently,
frequency dependent.
Electrical impedance
Z=applied voltage/current response
Example, series electrical circuit:
Z R iL 1 iC
We can write the mechanical impedance in a
similar form:
Z 2m im imo2 b im s i
8
Waves1