Transcript pprs1x

GEOGG141/ GEOG3051
Principles & Practice of Remote Sensing (PPRS)
Introduction, EM Radiation (i)
Dr. Mathias (Mat) Disney
UCL Geography
Office: 113, Pearson Building
Tel: 7679 0592
Email: [email protected]
http://www2.geog.ucl.ac.uk/~mdisney/teaching/GEOGG141/GEOGG141.html
http://www2.geog.ucl.ac.uk/~mdisney/teaching/3051/GEOG3051.html
Format
• Component 1 (GEOGG141 only)
– Mapping principles (Dowman, Iliffe, Haklay, Backes, Smith, Cross)
– Understanding the geometry of data acquisition
– Orbits, geoids and principles of geodesy
• Component 2 (GEOGG141 & GEOG3051)
–
–
–
–
–
–
Radiometric principles (Disney)
Understanding the what we measure and how
Radiative transfer (GEOGG141 only – Reading Week)
Resolution, sampling and practical tradeoffs
Pre-processing and ground segment
Active remote sensing (LIDAR, RADAR…)
2
Miscellaneous
• Remote Sensing at UCL
– NERC National Centre for Earth Observation (NCEO)
http://www.nceo.ac.uk/)
– Involvement in several themes at UCL
• Cryosphere @ Earth Sciences: http://www.cpom.org/ (Wingham, Laxman
et al.)
• Carbon Theme @ Geography (Lewis, Mat Disney et al.)
• Solid Earth: COMET @ GE http://comet.nerc.ac.uk/ (Ziebart)
– More generally
• MSSL: http://www.ucl.ac.uk/mssl e.g. imaging (Muller), planetary, astro,
instruments
•
UK prof. body - Remote Sensing and Photogrammetry Society
– http://www.rspsoc.org/
3
Reading and browsing
Remote sensing
Campbell, J. B. (2006) Introduction to Remote Sensing (4th ed), London:Taylor and Francis.
Harris, R. (1987) "Satellite Remote Sensing, An Introduction", Routledge & Kegan Paul.
Jensen, J. R. (2006, 2nd ed) Remote Sensing of the Environment: An Earth Resource
Perspective, Prentice Hall, New Jersey. (Excellent on RS but no image processing).
Jensen, J. R. (2005, 3rd ed.) Introductory Digital Image Processing, Prentice Hall, New Jersey.
(Companion to above) BUT some available online at
http://www.cla.sc.edu/geog/rslab/751/index.html
Jones, H. and Vaughan, R. (2010, paperback) Remote Sensing of Vegetation: Principles,
Techniques, and Applications, OUP, Oxford. Excellent.
Lillesand, T. M., Kiefer, R. W. and Chipman, J. W. (2004, 5th ed.) Remote Sensing and Image
Interpretation, John Wiley, New York.
Mather, P. M. (2004) Computer Processing of Remotely-sensed Images, 3rdEdition. John Wiley
and Sons, Chichester.
Rees, W. G. (2001, 2nd ed.). Physical Principles of Remote Sensing, Cambridge Univ. Press.
Warner, T. A., Nellis, M. D. and Foody, G. M. eds. (2009) The SAGE Handbook of Remote
Sensing (Hardcover). Limited depth, but very wide-ranging – excellent reference book.
General
Monteith, J. L. and Unsworth, M. H. (1990) ”Principles of Environmental Physics”, 2nd ed. Edward
Arnold, London.
Hilborn, R. and Mangel, M. (1997) “The Ecological Detective: Confronting models with data”,
Monographs in population biology 28, Princeton University Press, New Jersey, USA.
4
Browsing
•
•
•
•
•
•
•
•
Moodle & www.geog.ucl.ac.uk/~mdisney/pprs.html
Web
Tutorials
http://rst.gsfc.nasa.gov/
http://earth.esa.int/applications/data_util/SARDOCS/spaceborne/Radar_Courses/
http://www.crisp.nus.edu.sg/~research/tutorial/image.htm
http://ccrs.nrcan.gc.ca/resource/index_e.php#tutor
http://octopus.gma.org/surfing/satellites/index.html
•
Glossary : http://ccrs.nrcan.gc.ca/glossary/index_e.php
•
•
•
•
•
•
•
Other resources
NASA www.nasa.gov
NASAs Visible Earth (source of data): http://visibleearth.nasa.gov/
European Space Agency earth.esa.int (eg Image of the week….)
NOAA www.noaa.gov
IKONOS: http://www.spaceimaging.com/
QuickBird: http://www.digitalglobe.com/
5
Today
• General introduction to remote sensing (RS), Earth
Observation (EO).......
– definitions of RS
– Concepts and terms
• remote sensing process, end-to-end
• Radiation I
– Concepts and terms
• remote sensing process, end-to-end
6
What is remote sensing?
The Experts say "Remote Sensing (RS) is...”
• “The science technology and art of obtaining information
about objects or phenomena from a distance (i.e. without
being in physical contact with them”
http://ccrs.nrcan.gc.ca/glossary/index_e.php?id=486
• But not the whole story:
– Tend to use Earth Observation (EO). To distinguish from?
– Domains (atmosphere, terrestrial, ocean, cryosphere,
biosphere etc)
– But also astronomy, planetary remote sensing etc.
7
What is remote sensing (II)?
The not so experts say "Remote Sensing is...”
• Advanced colouring-in.
• Seeing what can't be seen, then convincing someone that you're
right.
• Being as far away from your object of study as possible and getting
the computer to handle the numbers.
• Legitimised voyeurism
(more of the same from http://www.ccrs.nrcan.gc.ca/ccrs/eduref/misc)
8
Remote Sensing Examples
•Kites (still used!) Panorama of San Francisco, 1906.
•Up to 9 large kites used to carry camera weighing 23kg.
9
Remote Sensing: scales and platforms
•Both taken via kite aerial photography
•http://arch.ced.berkeley.edu/kap/kaptoc.html
•http://activetectonics.la.asu.edu/Fires_and_Floods/
10
Remote Sensing: scales and platforms
upscale
upscale
upscale
•Platform depends on application
•What information do we want?
•How much detail?
http://www-imk.fzk.de:8080/imk2/mipas-b/mipas-b.htm
•What type of detail?
11
Remote Sensing: scales and platforms
upscale
•Many types of satellite
•Different orbits, instruments, applications
12
Remote Sensing Examples
•Global maps of vegetation from MODIS instrument
IKONOS-2 image of Venice
http://www.esa.int/esaEO/SEM44R0UDSG_index_1.html
13
Why do we use remote sensing?
• Many monitoring issues global or regional
• Drawbacks of in situ measurement …..
• Remote sensing can provide (not always!)
– Global coverage
• Range of spatial resolutions
– Temporal coverage (repeat viewing)
– Spectral information (wavelength)
– Angular information (different view angles)
14
Why do we study/use remote sensing?
• source of spatial and temporal information (land surface, oceans,
atmosphere, ice)
• monitor and develop understanding of environment (measurement
and modelling)
• information can be accurate, timely, consistent
• remote access
• some historical data (1960s/70s+)
• move to quantitative RS e.g. data for climate
– some commercial applications (growing?) e.g. weather
– typically (geo)'physical' information but information widely used
(surrogate - tsetse fly mapping)
– derive data (raster) for input to GIS (land cover, temperature etc.)
15
EO process in summary.....
• Collection of data
– Some type of remotely measured signal
– Electromagnetic radiation of some form
• Transformation of signal into something useful
– Information extraction
– Use of information to answer
confirm/contradict a hypothesis
a
question
or
16
The Remote Sensing Process
• Collection of information about an object without
coming into physical contact with that object
Passive: solar
reflected/emitted
Active:RADAR
(backscattered);
LiDAR
(reflected)
17
The Remote Sensing Process
• What are we collecting?
– Electromagnetic radiation (EMR)
• What is the source?
– Solar radiation
• passive – reflected (vis/NIR), emitted (thermal)
– OR artificial source
• active - RADAR, LiDAR even sonar
• Note various paths
– Source to sensor direct?
– Source to surface to sensor
– Sensor can also be source
18
Energy transport
• Conduction
– transfer of molecular kinetic (motion) energy due to contact
– heat energy moves from T1 to T2 where T1 > T2
• Convection
– movement of hot material from one place to another
– e.g. Hot air rises
• Radiation
– results whenever an electrical charge is accelerated
– propagates via EM waves, through vacuum & over long distances
hence of interest for remote sensing
19
Electromagnetic radiation: wave model
•James Clerk Maxwell (1831-1879)
•Wave model of EM energy
•Unified theories of electricity and magnetism (via Newton,
Faraday, Kelvin, Ampère etc.)
•Oscillating electric charge produces magnetic field (and
vice versa)
•Can be described by 4 simple (ish) differential equations
•Calculated speed of EM wave in a vacuum
20
Electromagnetic radiation
•EM wave is
•Electric field (E)
perpendicular to
magnetic field (M)
•Travels at velocity, c
(3x108 ms-1, in a
vacuum)
•Or does it?? CERN 2011 ….
21
Wave: terms
•All waves characterised
by:
•Wavelength,  (m)
•Amplitude, a (m)
v
•Velocity, v (m/s)
•Frequency, f (s-1 or Hz)
•Sometimes period, T
(time for one oscillation
i.e. 1/f)
22
Wave: terms
•Velocity, frequency and wavelength related by
1
lµ
f
•f proportional to 1/ (constant of proportionality is
wave velocity, v i.e.
v = fl
23
Wave: terms
•Note angles in radians (rad)
•360° = 2 rad, so 1 rad = 360/2 = 57.3°
•Rad to deg. (*180/) and deg. to rad (* /180)
24
Aside: Maxwell’s Equations

 4k
0
1. Gauss’ law for electricity: the electric flux out of any
closed surface is proportional to the total charge
enclosed within the surface
E 
2. Gauss’ law for magnetism: the net magnetic flux out
of any closed surface is zero (i.e. magnetic monopoles
do not exist)
 B  0
3. Faraday’s Law of Induction: line integral of electric
field around a closed loop is equal to negative of rate of
change of magnetic flux through area enclosed by the loop.
B
 E  
t
4. Ampere’s Law: for a static electric field, the line integral
of the magnetic field around a closed loop is proportional to
  B  0 J   0 0
the electric current flowing through the loop.
E
t
•Note:  is ‘divergence’ operator and x is ‘curl’ operator; 0 is
permittivity of free space; 0 is permeability of free space
http://en.wikipedia.org/wiki/Maxwell's_equations
25
EM Spectrum
•EM Spectrum
•Continuous range of EM radiation
•From very short wavelengths (<300x10-9m)
•high energy
•To very long wavelengths (cm, m, km)
•low energy
•Energy is related to wavelength (and hence frequency)
26
Units
•EM wavelength  is m, but various prefixes
•cm (10-2m)
•mm (10-3m)
•micron or micrometer, m (10-6m)
•Angstrom, Å (10-8m, used by astronomers mainly)
•nanometer, nm (10-9)
•f is waves/second or Hertz (Hz)
•NB can also use wavenumber, k = 1/ i.e. m-1
27
• Energy radiated from sun (or active sensor)
• Energy  1/wavelength (1/)
– shorter  (higher f) == higher energy
– longer  (lower f) == lower energy
from http://rst.gsfc.nasa.gov/Intro/Part2_4.html
28
EM Spectrum
•We will see how energy is related to frequency, f (and hence inversely proportional
to wavelength, )
•When radiation passes from one medium to another, speed of light (c) and  change,
hence f stays the same
29
Electromagnetic spectrum: visible
• Visible part - very small part
– from visible blue (shorter )
– to visible red (longer )
– ~0.4 to ~0.7m
Violet: 0.4 - 0.446 m
Blue: 0.446 - 0.500 m
Green: 0.500 - 0.578 m
Yellow: 0.578 - 0.592 m
Orange: 0.592 - 0.620 m
Red: 0.620 - 0.7 m
30
Electromagnetic spectrum: IR
•
•
•
•
Longer wavelengths (sub-mm)
Lower energy than visible
Arbitrary cutoff
IR regions covers
– reflective (shortwave IR,
SWIR)
– region just longer than visible
known as near-IR, NIR
– and emissive (longwave or
thermal IR, TIR)
31
Electromagnetic spectrum: microwave
• Longer wavelength again
– RADAR
– mm to cm
– various bands used by
RADAR instruments
– long  so low energy,
hence need to use own
energy source (active
wave)
32
Blackbody
•All objects above absolute zero (0 K or -273° C)
radiate EM energy (due to vibration of atoms)
•We can use concept of a perfect blackbody
•Absorbs and re-radiates all radiation incident upon it at
maximum possible rate per unit area (Wm-2), at each
wavelength, , for a given temperature T (in K)
•Energy from a blackbody?
33
Stefan-Boltzmann Law
•Total emitted radiation from a blackbody, M, in Wm-2,
described by Stefan-Boltzmann Law
M   T
4
•Where T is temperature of the object in K; and  = is
Stefan-Boltmann constant = 5.6697x10-8 Wm-2K-4
•So energy  T4 and as T so does M
•Tsun  6000K M,sun  73.5 MWm-2
•TEarth  300K M , Earth  460 Wm-2
34
Stefan-Boltzmann Law
35
Stefan-Boltzmann Law
•Note that peak of sun’s energy around 0.5 m
•negligible after 4-6m
•Peak of Earth’s radiant energy around 10 m
•negligible before ~ 4m
•Total energy emitted in each case is area under curve
36
Stefan-Boltzmann Law
•Generalisation of Stefan-Boltzmann Law
•radiation  emitted from unit area of any plane surface with
emissivity of  (<1) can be written as:
 = Tn
where n is a numerical index
•For ‘grey’ surface where  is nearly independent of, n =4
•When radiation emitted predominantly at  < m , n > 4
• When radiation emitted predominantly at  > m , n < 4
37
Peak  of emitted radiation: Wien’s Law
•Wien deduced from thermodynamic principles that
energy per unit wavelength E() is function of T and 
f (T )
E (  
5
•At what m is maximum radiant energy emitted?
•Comparing blackbodies at different T, note mT is
constant, k = 2897mK i.e. m = k/T
•m, sun = 0.48m
•m, Earth = 9.66m
38
Wien’s Law
•AKA Wien’s
Displacement Law
•Increase
(displacement) in m
as T reduces
•Straight line in loglog space
Increasing
, lower
energy
39
Particle model of radiation
•Hooke (1668) proposed wave theory of light
propagation (EMR) (Huygens, Euler, Young, Fresnel…)
•Newton (~1700) proposed corpuscular theory of
light (after al-Haytham, Avicenna ~11th C, Gassendi ~ early17th C)
•observation of light separating into spectrum
•Einstein explained photoelectric effect by
proposing photon theory of light
•Photons: individual packets (quanta) of energy
possessing energy and momentum
•Light has both wave- and particle-like properties
•Wave-particle duality
40
Particle model of radiation
•EMR intimately related to atomic structure and energy
•Atom: +ve charged nucleus (protons +neutrons) & -ve charged
electrons bound in orbits
•Electron orbits are fixed at certain levels, each level corresponding to a
particular electron energy
•Change of orbit either requires energy (work done), or releases energy
•Minimum energy required to move electron up a full energy level
(can’t have shift of 1/2 an energy level)
•Once shifted to higher energy state, atom is excited, and possesses
potential energy
•Released as electron falls back to lower energy level
41
Particle model of radiation
•As electron falls back, quantum of EMR (photons) emitted
•electron energy levels are unevenly spaced and characteristic of a
particular element (basis of spectroscopy)
•Bohr and Planck recognised discrete nature of transitions
•Relationship between frequency of radiation (wave theory) of
emitted photon (particle theory)
E  hf
•E is energy of a quantum in Joules (J); h is Planck constant
(6.626x10-34Js) and f is frequency of radiation
42
Particle model of radiation
•If we remember that velocity v = f and in this case v is
actually c, speed of light then
E
hc

•Energy of emitted radiation is inversely proportional to 
•longer (larger)  == lower energy
•shorter (smaller)  == higher energy
•Implication for remote sensing: harder to detect longer  radiation
(thermal for e.g.) as it has lower energy
43
Particle model of radiation
From: http://abyss.uoregon.edu/~js/glossary/bohr_atom.html
44
Particle model of radiation: atomic shells
http://www.tmeg.com/esp/e_orbit/orbit.htm
45
Planck’s Law of blackbody radiation
•Planck was able to explain energy spectrum of blackbody
•Based on quantum theory rather than classical mechanics
E   
2c 2 h
5
1
e
hc
kT
1
•dE()/d gives constant of Wien’s Law
•E() over all  results in Stefan-Boltzmann relation
•Blackbody energy function of , and T
http://www.tmeg.com/esp/e_orbit/orbit.htm
46
Planck’s Law
•Explains/predicts shape of blackbody curve
•Use to predict how much energy lies between given 
•Crucial for remote sensing
http://hyperphysics.phy-astr.gsu.edu/hbase/bbrc.html#c1
47
Consequences of Planck’s Law: plant pigments
•Chlorophyll a,b absorption spectra
•Photosynthetic pigments
•Driver of (nearly) all life on Earth!
•Source of all fossil fuel
48
Consequences of Planck’s Law: human vision
Cones: selective
sensitivity
Rods :
monochromatic
sensitivity
http://www.photo.net/photo/edscott/vis00010.htm
49
Applications of Planck’s Law
•Fractional energy from 0 to  i.e. F0? Integrate Planck function
•Note Eb(,T), emissive power of bbody at , is function of product
T only, so....
Radiant energy from 0 to 
E0  , T 
Eb  , T 
F0  , T  
  d  , T 
4
5
T

T
0
T
Total radiant energy
for  = 0 to  = 
50
Applications of Planck’s Law: example
•Q: what fraction of the total power radiated by a black body
at 5770 K fall, in the UV (0 <   0.38µm)?
•Need table of integral values of F0
•So, T = 0.38m * 5770K = 2193mK
T (mK x103)
•Or 2.193x103 mK i.e. between 2 and 3
2
3
4
5
6
8
10
12
14
16
18
20
•Interpolate between F0 (2x103) and F0 (3x103)
F00.38  , T   F00.38 2 x103  2.193  2

 0.193
F00.38 3x103   F00.38 2 x103 
3 2
F00.38  , T   0.067
 0.193
0.273  0.067
F0(T)
(dimensionless)
.067
.273
.481
.634
.738
.856
.914
.945
.963
.974
.981
.986
•Finally, F00.38 =0.193*(0.273-0.067)+0.067=0.11
•i.e. ~11% of total solar energy lies in UV between 0 and 0.38 m
51
Applications of Planck’s Law: exercise
•Show that ~38% of total energy radiated by
the sun lies in the visible region (0.38µm < 
 0.7µm) assuming that solar T = 5770K
•Hint: we already know F(0.38m), so calculate
F(0.7m) and interpolate
T (mK x103)
2
3
4
5
6
8
10
12
14
16
18
20
F0(T)
(dimensionless)
.067
.273
.481
.634
.738
.856
.914
.945
.963
.974
.981
.986
52
Electromagnetic spectrum
• Interaction with the atmosphere
– transmission NOT even across the spectrum
– need to choose bands carefully!
53
Departure from BB assumption?
54
Recap
•Objects can be approximated as blackbodies
•Radiant energy  T4
•EM spectrum from sun a continuum peaking at ~0.48m
•~39% energy between 0.38 and 0.7 in visible region
•Planck’s Law - shape of power spectrum for given T (Wm-2 m-1)
•Integrate over all  to get total radiant power emitted by BB per unit area
•Stefan-Boltzmann Law M = T4 (Wm-2)
•Differentiate to get Wien’s law
•Location of max = k/T where k = 2898mK
55
Caveats!
• Remote sensing has many problems
– Can be expensive
– Technically difficult
– NOT direct
• measure surrogate variables
• e.g. reflectance (%), brightness temperature (Wm-2 
oK), backscatter (dB)
• RELATE to other, more direct properties.
56
Example biophysical variables
After Jensen, p. 9
57
Example biophysical variables
Good discussion of spectral information extraction:
http://dynamo.ecn.purdue.edu/~landgreb/Principles.pdf
After Jensen, p. 9
58
Interesting stuff…..
•
IKONOS image gallery index: http://www.spaceimaging.com/CorpSite/gallery/allimages.aspx
•
Quickbird, Worldview 1 & 2 image gallery:
http://www.digitalglobe.com/index.php/27/Sample+Imagery+Gallery
•
Eg Japan earthquake and tsunami:
http://www.digitalglobe.com/index.php/27/Sample+Imagery+Gallery?ITEM=452
59