Folie 1 - University of Nebraska–Lincoln
Download
Report
Transcript Folie 1 - University of Nebraska–Lincoln
Thermodynamics in static electric and magnetic fields
1st law reads: dU dQ dW
-so far focus on PVT-systems where dW PdV originates from mechanical work
Now:
-additional work terms for matter in fields
Source of D is density of
1
D
Dielectric Materials
A
+
-q
Ve
dielectric material
+q
L
D d3r
D d 2 r DA
VGauss
VGauss
free charges.
Here: charge q on
capacitor plate with area A
d3r q
VGauss
Ve
L
q
-displacement field D given by the free charges on the capacitor plates: D
A
-electric field inside the capacitor: E
-Reduction of q
Wcap Ve dq
With
Energy content in capacitor reduced which means work Wcap>0
done by the capacitor (in accordance with our sign convention for PVT systems)
(dq<0 and Ve>0 yields Wcap>0)
Ve dq E L A dD
Ve dq VEdD
V=volume of the dielectric material
Wcap V E dD
-When no material is present:
still work is done by changing the field energy in the capacitor
D 0E
Wempty cap V 0 E dE
-Work done by the material exclusively:
Wsys Wcap Wempty cap
parameterized e.g., with time
(slow changes!)
dE (t )
dD(t )
V EdD V 0 EdE V E (t )
0
dt
dt
dt
dE (t )
dD(t )
Wsys V E (t )
0
dt
dt
dt
With
D 0 E P
Polarization=total dipole moment per volume
Wsys V E (t )
d P (t )
dt
dt
dW VEd P
With
dU dQ dW
dU dQ EVd P (where V=const. is assumed so
With V P : Pe
we define the total dipole moment of the dielectric material
that PdV has not to be considered )
Comparing dU dQ E dPe with
dU dQ P dV
Correspondence
E P
(where work is done mechanically via volume change against P)
and
Pe V
-Legendre transformations
(providing potentials depending on useful natural variables)
dU TdS E dPe
making electric field E variable
d ( U EPe ) TdS Pe dE
dU TdS d (E Pe ) PdE
e
dH TdS Pe dE
H=H(S,E)
dH TdS Pe dE
making T variable
d ( H TS ) SdT Pe dE
dH d (TS ) SdT Pe dE
G=G(T,E)
G
S
T E
and
G
Pe
E T
dG SdT Pe dE
2
Magnetic Materials
R
I
Faraday’s law:
dB
E(r )dr
dt
N: # of turns of the wire
A: cross sectional
where
B
B d
2
r
B A B here
voltage Vind induced in 1 winding
Ampere’s law:
Hdr
Itot
where
Itot N I here
area of the ring
magn. flux
lines
-Reduction of the current I
work done by the ring
dWring
N Vind I
work done by the ring per time
dt
Hdr
dWring
dt
A 2 R
dB
dB
H Vring H
dt
dt
makes sure that reduction of B ( dB / dt 0 )
corresponds to work done by the ring dWring / dt 0
2 R H N I
I
2 R H
N
E(r )dr
dB
dB
A
dt
dt
-Again, when no material is present:
still work is done on the source by changing the field energy
In general: B 0 H M
No material
M=0
where M is the magnetization = magnetic dipole moment
per volume
B 0 H
dWmm dWring
dH
Vring H 0
dt
dt
dt
dH
dB
V
H
ring
0
dM
dt
dt
Vring 0 H
dt
dt
rate at which work is done by the magnetic material
dWmm
dM
Vring 0 H
dt
dt
B 0 H M
Wmm
dW V 0 HdM
-Legendre transformations
(providing potentials depending on useful natural variables)
dU TdS 0VHdM
making magnetic field H variable
dU TdS 0Vd ( HdM ) 0VMdH
d ( U 0VMH ) TdS 0VMdH
Henth =Henth(S,H)
dHenth TdS 0VMdH
dHenth TdS 0VMdH
making T variable
dHenth d (TS ) SdT 0VMdH
dG SdT 0VMdH
G
S
T H
d ( Henth TS ) SdT 0VMdH
G=G(T,H)
and M
1
0V
G
H T