Transcript Slide 1

Physics 104 – Spring 2014
Intro and Harmonic Oscillator Energy
β€’ Maglev Tour
– Magnetic force π‘žπ‘£ × π΅
www.win.net/~dorsea/nehager/south/atlanta_maglev.htm
β€’ Introduction and Syllabus
β€’ Procedures (same as 103)
β€’ Topics covered
β€’ Differences with Phy 103
American Maglev Technology, Inc.
Powder Springs, GA
Jan 2011
β€’ Harmonic Oscillator
Intro and Syllabus
Physics 104
General Physics: Thermodynamics, Electromagnetism, Optics
Spring 2014 Syllabus
β€’
β€’
β€’
β€’
β€’
β€’
β€’
β€’
β€’
β€’
β€’
β€’
β€’
β€’
β€’
β€’
β€’
β€’
β€’
β€’
β€’
β€’
β€’
β€’
Instructor: Nat Hager, Research Scientist, Physics and Engineering
173 Masters/Esbenshade (behind mineral gallery)
Email:
[email protected] - also forwards to smartphone. (OK to nag if I don’t reply in a day or 2).
Web:
msi-sensing.com/etown.htm or public directory β€œhagerne”
Phone:
Office/Lab 361.1377. Home: 898.3053 before 9:00 PM. Please leave a message.
Office Hours: Monday, Tuesday 1:00 – 2:00 PM
Or by appointment. Please feel free to stop by my lab anytime, if my door is closed please leave a note.
Class Hours:
Mon/Tue/Fri 11:00 AM – 12:20 PM
All classes in Nicarry 228. All class periods are the same format. Discussion topics will be covered in all sessions.
Lab:
Tue/Fri
2:00 – 3:50 PM
Prerequisites: Physics 103 or equivalent
Textbook:
Giancoli, D.C., Physics, Sixth Edition, Prentice Hall, 2004.
Supplemental Texts: Many Resources in the Physics Hideaway in Esbenshade
including: Boyle, J, Study Guide: Physics (Giancoli), Prentice Hall, 2004.
Procedures
β€’ Same as Physics 103
– WebAssign (setup)
– Quizzes (5)
– Exams (3)
– Lab
– Final
– Powerpoints
– Equation sheets
Topics
β€’
β€’
β€’
β€’
Waves and Sound
Thermodynamics
Electricity and Magnetism
Optics
(Ch. 11-12)
(Ch. 13-15)
(Ch. 16-22)
(Ch. 23)
We’re trying to cover a lot,
so we’ll have to skip around some.
(almost never do starred sections)
General Differences with Physics 103
β€’ Use β€œEnergy” in broader context
–
–
–
–
Kinetic energy of ideal gas. (6.02 x 1023 molecules)
Potential energy stored in chemical bonds (fuel).
Energy stored/carried in EM field.
Anything that can do work!
β€’ Define new Forces
– Electrostatic 𝐹 = π‘žπΈ
– Magnetic
𝐹 = π‘žπ‘£ × π΅
– But use same F = ma relations
β€’ Reinterpret old concepts
– Gravitational Field g = 9.8 𝑁 π‘˜π‘” (π‘ π‘Žπ‘šπ‘’ π‘Žπ‘  π‘š 𝑠 2 )
– Electric Field
𝐸 = π‘₯π‘₯ 𝑁 𝐢
– Magnetic Field
𝐡 = π‘₯π‘₯ 𝑁 𝐴 βˆ™ π‘š
F = mg
F = π‘žπΈ
F = qv × π΅
β€’ Develop analogous methods
– Flow of fluid (continuity) -> flow of electrical current (Kirchoff)
Simple Harmonic Oscillator
β€’ A little Physics 103
β€’ Jumping-off point for Waves
Simple Harmonic Oscillator
β€’ Object subject to restoring force around equilibrium:
F = - kx
–
–
–
–
Force proportional to and opposite displacement
Oscillatory motion around equilibrium
Rate determined by mass m and k
Frictional damping
β€’ Examples
–
–
–
–
–
Block on a spring (car on springs)
Meter stick anchored one end (diving board)
String in guitar (sound wave)
Object bobbing in water
Molecule in crystal lattice
Energy in Harmonic Oscillator
β€’ Potential Energy
– Work done by expanding spring:
– (force x distance)
π‘₯𝑓
βˆ’π‘˜π‘₯
π‘₯𝑖
– π‘Š=
𝑑π‘₯ = βˆ’
1
π‘˜π‘₯𝑓 2
2
1
2
βˆ’ π‘˜π‘₯𝑖 2
– Looks like decrease in potential energy
β€’ Kinetic Energy
– Energy gained by block being pushed:
1
2
1
2
– π‘Š = π‘šπ‘£π‘“ 2 βˆ’ π‘šπ‘£π‘– 2
– Appears as increase in kinetic energy
β€’ Total Energy
– Loss of potential = gain in kinetic, vice-versa
– Sum of Kinetic and Potential Constant
1
2
1
2
– 𝐸 = π‘šπ‘£ 2 + π‘˜π‘₯ 2 = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘
1
– Limiting points 𝐸 = 2 π‘šπ‘£π‘šπ‘Žπ‘₯ 2
1
2
𝐸 = π‘˜π΄2
Harmonic Oscillator Terminology
β€’ Cycle – One complete oscillation
β€’ Amplitude – x = -A to x = +A
β€’ Period – time to make one cycle
β€’ Frequency – # cycles per second
β€’ Frequency vs. Period
–
–
f = 1/T
T = 1/f
Example 11-4 - Part 1
β€’ Vertical - Find spring constant
𝐹𝑦 = 0
π‘˜π‘₯π‘œ βˆ’ π‘šπ‘” = 0
π‘˜=
π‘šπ‘”
π‘₯π‘œ
=
0.3 π‘˜π‘” 9.8 π‘š 𝑠 2
15 π‘š
π‘˜ = 19.6 𝑁 π‘š
Example 11-4 - Part 2
β€’ Horizontal - Find total energy
1
1
πΈπ‘‘π‘œπ‘‘ = 2 π‘˜π‘₯ 2 + 2 π‘šπ‘£ 2
β€’ At maximum amplitude A
𝟏
1
1
πΈπ‘‘π‘œπ‘‘ = 𝟐 π’Œπ’™πŸ + 2 π‘šπ‘£ 2 = 2 π‘˜π΄2
1
πΈπ‘‘π‘œπ‘‘ = 2 19.6 𝑁 π‘š 0.1 π‘š
πΈπ‘‘π‘œπ‘‘ = 0.098 J
2
Example 11-4 - Part 3
β€’ At x=0 - maximum velocity vmax
1
𝟏
1
πΈπ‘‘π‘œπ‘‘ = 2 π‘˜π‘₯ 2 + 𝟐 π’Žπ’—πŸ = 2 π‘šπ‘£π‘šπ‘Žπ‘₯ 2
1
0.098 𝐽 = πΈπ‘‘π‘œπ‘‘ = 2 π‘šπ‘£π‘šπ‘Žπ‘₯ 2
π‘£π‘šπ‘Žπ‘₯ =
2 βˆ™0.098 𝐽
0.3 π‘˜π‘”
= 0.81 π‘š 𝑠
β€’ At x= 0.05 - velocity
πΈπ‘‘π‘œπ‘‘ = 0.098 𝐽
1
𝑃𝐸 = 2 19.6 𝑁 π‘š 0.05 π‘š
2
= .0245 𝐽
𝐾𝐸 = 0.098 𝐽 βˆ’ 0.0245 𝐽 = 0.0735 𝐽
1
π‘šπ‘£ 2
2
= .0735
𝑣 = 0.7π‘š/𝑠
Example 11-4 - Part 4
β€’ Maximum acceleration at maximum stretch
𝐹 = π‘šπ‘Ž = π‘˜π‘₯ = π‘˜π΄
π‘Ž=
π‘˜π΄
π‘š
π‘Ž=
19.6 𝑁 π‘š 0.1 π‘š
0.3 π‘˜π‘”
π‘Ž = 6.53 π‘š 𝑠 2
Example – Problem 23
β€’ At center point A
1
𝟏
1
πΈπ‘‘π‘œπ‘‘ = 2 π‘˜π‘₯ 2 + 𝟐 π’Žπ’—πŸ = 2 π‘šπ‘£π‘šπ‘Žπ‘₯ 2
1
πΈπ‘‘π‘œπ‘‘ = 2 0.755 π‘˜π‘” 2.96 π‘š
πΈπ‘‘π‘œπ‘‘ = 3.31 J
β€’ Amplitude
1
3. 31 𝐽 = πΈπ‘‘π‘œπ‘‘ = 2 π‘˜π΄2
𝐴=
2 βˆ™3.31 𝐽
124 𝑁 π‘š
= 0.231 π‘š
2
Example – Problem 13
β€’ At any point x
𝟏
𝟏
πΈπ‘‘π‘œπ‘‘ = 𝟐 π’Œπ’™πŸ + 𝟐 π’Žπ’—πŸ
1
πΈπ‘‘π‘œπ‘‘ = 2 280 𝑁 π‘š .02 π‘š
2
1
+ 2 3 π‘˜π‘” .55 π‘š 𝑠
πΈπ‘‘π‘œπ‘‘ = 0.056 J + 0.45375 J = 0.51 J
β€’ Amplitude
1
0. 51 𝐽 = πΈπ‘‘π‘œπ‘‘ = 2 π‘˜π΄2
𝐴 = .06 π‘š
β€’ Max velocity
1
0. 51 𝐽 = πΈπ‘‘π‘œπ‘‘ = 2 π‘šπ‘£π‘šπ‘Žπ‘₯ 2
π‘£π‘šπ‘Žπ‘₯ = .58 π‘š 𝑠
2
Vertical Harmonic Oscillator
Summary - Harmonic Oscillator Energy
β€’ At any position
1
1 2
2
𝐸 = π‘šπ‘£ + π‘˜π‘₯
2
2
β€’ At full amplitude:
1
𝟏 𝟐 1 2
2
𝐸 = π‘šπ‘£ + π’Œπ’™ = π‘˜π΄
2
𝟐
2
β€’ At max-velocity midpoint:
𝟏
1 2 1
𝟐
𝐸 = π’Žπ’— + π‘˜π‘₯ = π‘šπ‘£π‘šπ‘Žπ‘₯ 2
𝟐
2
2
β€’ Same for all 3, find for one case know it for all.
β€’ Find total energy, find one component, subtract for other.