The Lagrangian
Download
Report
Transcript The Lagrangian
The Lagrangian
Equation
INTERMEDIATE MECHANICS
WESLEY QUEEN
Developing a new perspective
Hero of Alexandria (70 A.D.) - light reflections takes the shortest path
Pierre de Fermat (1657) - light travels along a path that requires the
least time
Maupertuis (1747) - action is minimized through the “wisdom of
God”
Action is a quantity with dimensions of energy x time
William Hamilton (1834) –
“Of all the possible paths along which a dynamical
system may move from one point to another within a
specified time interval, the actual path followed is that
which minimizes the time integral of the difference
between the kinetic and potential energies.”
The Lagrangian
L=T-U
T = Kinetic Energy
U = Potential Energy
Asserts that for any given system there is a extremum (maximum or
minimum) when the time integral is taken of the difference of Kinetic
and Potential Energies.
𝑡2
𝑡1
𝑇 − 𝑈 𝑑𝑡 = Min or Max (Minimum in almost all dynamic
systems)
Let S =
𝑡2
𝐿
𝑡1
𝑑𝑡
“Action”
Calculus of Variations
Consider a function 𝑥𝑎 𝑡 = 𝑥0 𝑡 + 𝛼𝛽(𝑡) where 𝑥0 𝑡 produces a min value
for S, 𝛼 is a number, and 𝛽(𝑡) is 0 at both end points of our interval.
When this is integrated, the t is integrated out and S becomes a number
dependent on 𝛼, 𝑡1 , & 𝑡2 .
How does S depend on 𝛼?
𝜕
𝑆
𝜕𝛼
𝑥𝑎 𝑡
=
𝜕
𝑆
𝜕𝛼
𝑥𝑎 𝑡
=
𝜕 𝑡2
𝐿
𝜕𝛼 𝑡1
𝑑𝑡 =
𝑡2 𝜕𝐿 𝜕𝑥𝑎
(
𝑡1 𝜕𝑥𝑎 𝜕𝛼
+
𝑡2 𝜕
𝐿
𝑡1 𝜕𝛼
𝑑𝑡
𝜕𝐿 𝜕 𝑥𝑎
)𝑑𝑡
𝜕𝑥𝑎 𝜕𝛼
Use the Chain rule to separate
Calculus of Variations
Use substitution:
From our initial function:
𝑥𝑎 𝑡 = 𝑥0 𝑡 + 𝛼𝛽(𝑡)
𝜕
𝑆
𝜕𝛼
𝜕
𝑆
𝜕𝛼
𝑥𝑎 𝑡
𝑥𝑎 𝑡
𝜕𝑥𝑎
𝜕𝛼
=
𝑡2 𝜕𝐿 𝜕𝑥𝑎
(
𝑡1 𝜕𝑥𝑎 𝜕𝛼
=
𝑡2 𝜕𝐿
(
𝛽
𝑡1 𝜕𝑥𝑎
𝜕𝐿 𝜕 𝑥𝑎
+
)𝑑𝑡
𝜕𝑥𝑎 𝜕𝛼
+
𝜕𝐿
𝛽)𝑑𝑡
𝜕 𝑥𝑎
= 𝛽 &
𝜕 𝑥𝑎
𝜕𝛼
=𝛽
Calculus of Variations
Use integration by parts:
𝜕
𝑆
𝜕𝛼
𝜕
𝑆
𝜕𝛼
𝜕
𝑆
𝜕𝛼
𝑥𝑎 𝑡
=
𝑥𝑎 𝑡 =
𝑥𝑎 𝑡
=
𝑡2 𝜕𝐿
(
𝛽
𝑡1 𝜕𝑥𝑎
𝑡2 𝜕𝐿
𝛽𝑑𝑡
𝑡1 𝜕𝑥𝑎
𝑡2 𝜕𝐿
(
𝑡1 𝜕𝑥𝑎
−
+
𝜕𝐿
𝛽)𝑑𝑡
𝜕 𝑥𝑎
𝜕𝐿
𝑡
+
𝛽|𝑡21
𝜕 𝑥𝑎
−
𝑑 𝜕𝐿
)𝛽𝑑𝑡
𝑑𝑡 𝜕 𝑥𝑎
Euler’s Equation:
𝜕𝐿
𝜕𝑥0
=
𝑡2 𝑑 𝜕𝐿
(
)𝛽𝑑𝑡
𝑡1 𝑑𝑡 𝜕 𝑥𝑎
Since 𝑥0 𝑡 produces a stationary value
𝜕
for S,
𝑆 𝑥𝑎 𝑡 = 0
𝜕𝛼
𝑑 𝜕𝐿
𝑑𝑡 𝜕𝑥0
Calculus of Variations
Begun by Newton
Developed by Johann Bernoulli, Jakob Bernoulli, and Leonhard Euler
Important contributions made by Joseph Lagrange, Hamilton, and
Jacobi
Leonhard Euler
(1707 - 1783)
A falling object
Consider a falling object (no motion in the x or z dimensions)
1
2
𝑇 = 𝑚𝑦 2
Apply Euler’s Equation
𝑑
−𝑚𝑔 = (𝑚𝑦)
𝑑𝑡
1
2
𝐿 = 𝑚𝑦 2 - 𝑚𝑔𝑦
𝑈 = 𝑚𝑔𝑦
𝜕𝐿
𝜕𝑦
=
𝑑 𝜕𝐿
𝑑𝑡 𝜕𝑦
−𝑚𝑔 = 𝑚𝑦
𝑦 = −g
The Lagrangian gives us Newton’s second law with respect to gravity.
A projectile
Consider a projectile launched in the positive x direction at some angle 𝜃,
where 0 < 𝜃 < 90.
1
1
𝑇 = 𝑚𝑥 2 + 𝑚𝑦 2
𝑈 = 𝑚𝑔𝑦
2
2
1
1
2
𝐿 = 𝑚𝑥 + 𝑚𝑦 2 − 𝑚𝑔𝑦
2
2
X dimension
𝜕𝐿
𝜕𝑥
=
0=
𝑑 𝜕𝐿
𝑑𝑡 𝜕𝑥
𝑑
(𝑚𝑥)
𝑑𝑡
Y dimension
𝜕𝐿
𝜕𝑦
=
𝑑 𝜕𝐿
𝑑𝑡 𝜕𝑦
−𝑚𝑔 =
𝑑
(𝑚𝑦)
𝑑𝑡
0 = 𝑚𝑥
−𝑚𝑔 = 𝑚𝑦
𝑥=0
𝑦 = −g
An Orbiting body
y
Consider a body orbiting about a another body with a central force
acting on it.
Position
𝑥 = 𝑟𝑐𝑜𝑠 𝜃
y = 𝑟𝑠𝑖𝑛 𝜃
Velocity
M
𝑥 = 𝑟𝑐𝑜𝑠 𝜃 − 𝑟𝜃sin(𝜃) 𝑦 = 𝑟𝑠𝑖𝑛 𝜃 − 𝑟𝜃𝑐𝑜𝑠(𝜃)
The Lagrangian
1
2
𝑇 = 𝑚(𝑥 2 + 𝑦 2 )
1
2
L = 𝑚(𝑥 2 + 𝑦 2 ) +
1
2
r
𝑈=−
𝐺𝑀𝑚
𝑟
L = 𝑚(𝑟 2 + 𝑟 2 𝜃 2 ) +
𝐺𝑀𝑚
𝑟
𝐺𝑀𝑚
𝑟
m
𝜃
x
An Orbiting body
y
Consider a body orbiting about a another body with a central force
acting on it.
The Lagrangian
1
2
L = 𝑚(𝑟 2 + 𝑟 2 𝜃 2 ) +
𝐺𝑀𝑚
𝑟
r
M
Apply Euler’s Equations
𝜕𝐿
𝜕𝜃
𝑑 𝜕𝐿
= 𝑑𝑡 𝜕𝜃
𝑑
𝜕𝐿
𝜕𝑟
𝑑 𝜕𝐿
= 𝑑𝑡 𝜕𝑟
0 = 𝑑𝑡(m𝑟 2 𝜃)
𝑚𝑟𝜃 2 −
𝐿 = m𝑟 2 𝜃
𝑚𝑟𝜃 2 −
𝑟=−
Shows conservation of
Angular momentum
𝐺𝑀𝑚
𝑟2
𝐺𝑀𝑚
𝑟2
𝐺𝑀
𝑟2
𝑑
= 𝑑𝑡 (m𝑟)
= 𝑚𝑟
+ 𝑟𝜃 2
Indicates the acceleration in the direction r is the
central force acceleration + the tangential
acceleration
m
𝜃
x
Charge interaction
𝑞𝑏(𝑥𝑏 ,𝑦𝑏 )
Consider 3 charges interacting in a 2 dimensional plane
1
2
1
2
1
2
𝐿 = 𝑚𝑥𝑎2 + 𝑚𝑦𝑎2 −
𝑈=
𝑘𝑞𝑎 𝑞𝑏
(𝑥𝑏 −𝑥𝑎 )2 +(𝑦𝑏 −𝑦𝑎 )
𝑘𝑞𝑎 𝑞𝑏
−
2
(𝑥𝑏 −𝑥𝑎 )2 +(𝑦𝑏 −𝑦𝑎 )
=
(𝑥𝑐 −𝑥𝑎 )2 +(𝑦𝑐 −𝑦𝑎 )2
𝑘𝑞𝑎 𝑞𝑐
𝜕𝐿
𝜕𝑦𝑎
𝑑 𝜕𝐿
𝑑𝑡 𝜕 𝑥𝑎
𝑘𝑞𝑎 𝑞𝑏 (𝑥𝑏 −𝑥𝑎 )
2
2 3/2
𝑏 −𝑥𝑎 ) +(𝑦𝑏 −𝑦𝑎 ) )
-
𝑘𝑞𝑎 𝑞𝑐 (𝑥𝑐 −𝑥𝑎 )
((𝑥𝑐 −𝑥𝑎 )2 +(𝑦𝑐 −𝑦𝑎 )2 )3/2
= 𝑑𝑡 𝑚𝑥𝑎
-(
𝑘𝑞𝑎 𝑞𝑏 (𝑥𝑏 −𝑥𝑎 )
2
2 3/2
𝑏 −𝑥𝑎 ) +(𝑦𝑏 −𝑦𝑎 ) )
-
𝑘𝑞𝑎 𝑞𝑐 (𝑥𝑐 −𝑥𝑎 )
((𝑥𝑐 −𝑥𝑎 )2 +(𝑦𝑐 −𝑦𝑎 )2 )3/2
= 𝑚𝑥𝑎
-
- ((𝑥
- ((𝑥
𝑞𝑐(𝑥𝑐 ,𝑦𝑐 )
(𝑥𝑐 −𝑥𝑎 )2 +(𝑦𝑐 −𝑦𝑎 )2
𝑞𝑎(𝑥𝑎,𝑦𝑎)
Y dimension
X dimension
𝜕𝐿
𝜕𝑥𝑎
𝑘𝑞𝑎 𝑞𝑐
+
2
𝑑
=
y
x
1
2
𝑇 = 𝑚𝑥𝑎2 + 𝑚𝑦𝑎2
𝑑 𝜕𝐿
𝑑𝑡 𝜕𝑦𝑎
𝑘𝑞𝑎 𝑞𝑏 (𝑦𝑏 −𝑦𝑎 )
𝑥𝑏 −𝑥𝑎 2 + 𝑦𝑏 −𝑦𝑎 2 )3/2
𝑘𝑞𝑎 𝑞𝑏 (𝑦𝑏 −𝑦𝑎 )
( 𝑥𝑏 −𝑥𝑎 2 + 𝑦𝑏 −𝑦𝑎 2 )3/2
−(
−
𝑘𝑞𝑎 𝑞𝑐 (𝑦𝑐 −𝑦𝑎 )
𝑥𝑐 −𝑥𝑎 2 + 𝑦𝑐 −𝑦𝑎 2 )3/2
𝑘𝑞𝑎 𝑞𝑐 (𝑦𝑐 −𝑦𝑎 )
( 𝑥𝑐 −𝑥𝑎 2 + 𝑦𝑐 −𝑦𝑎 2 )3/2
𝑑
= 𝑑𝑡 (𝑚𝑦𝑎 )
= 𝑚𝑦𝑎
A rotating pendulum
y
Consider a pendulum of length 𝑙 moving on a massless ring
of radius r and constant angular velocity ω.
r
Position
𝑥 = 𝑟𝑐𝑜𝑠 ω𝑡 + 𝑙𝑠𝑖𝑛(θ) y = 𝑟𝑠𝑖𝑛 ω𝑡 − 𝑙𝑐𝑜𝑠(θ)
ωt
x
θ
Velocity
𝑙
𝑥 = −𝑟ω𝑠𝑖𝑛 ω𝑡 + 𝑙 𝜃𝑐𝑜𝑠(𝜃) 𝑦 = 𝑟𝜔𝑐𝑜𝑠 ω𝑡 + 𝑙 𝜃𝑠𝑖𝑛(𝜃)
The Lagrangian
1
2
𝑇 = 𝑚(𝑥 2 + 𝑦 2 )
1
2
𝑈 = 𝑚𝑔𝑦
1
2
𝐿 = 𝑚(𝑥 2 + 𝑦 2 ) - 𝑚𝑔𝑦
𝐿 = 𝑚[𝑟 2 𝜔2 + 𝑙 2 𝜃 2 + 2𝑟𝜔𝑙 𝜃𝑠𝑖𝑛(𝜃 − 𝜔𝑡)] - 𝑚𝑔(𝑟𝑠𝑖𝑛 ω𝑡 − 𝑙𝑐𝑜𝑠 θ )
m
A rotating pendulum
y
Consider a pendulum of length 𝑙 moving on a massless ring
of radius r and constant angular velocity ω.
The Lagrangian
r
1
2
𝐿 = 𝑚[𝑟 2 𝜔2 + 𝑙 2 𝜃 2 + 2𝑟𝜔𝑙 𝜃𝑠𝑖𝑛(𝜃 − 𝜔𝑡)] - 𝑚𝑔(𝑟𝑠𝑖𝑛 ω𝑡 − 𝑙𝑐𝑜𝑠 θ )
𝜕𝐿
𝜕𝜃
=
𝑙
𝑑 𝜕𝐿
𝑑𝑡 𝜕𝜃
= 𝑚𝑟𝜔𝑙 𝜃𝑐𝑜𝑠(𝜃 − 𝜔𝑡) - 𝑚𝑔𝑙𝑠𝑖𝑛 θ
𝑑
[𝑚𝑙 2 𝜃
𝑑𝑡
x
θ
Apply Euler’s Equation
𝜕𝐿
𝜕𝜃
ωt
𝑑 𝜕𝐿
𝑑𝑡 𝜕𝜃
=
𝑑 𝜕𝐿
𝑑𝑡 𝜕𝜃
= 𝑚𝑙 2 𝜃 + 𝑚𝑟𝜔𝑙 𝜃𝑐𝑜𝑠 (𝜃 − 𝜔𝑡)- 𝑚𝑟𝜔2 𝑙𝑐𝑜𝑠 (𝜃 − 𝜔𝑡)
+ 𝑚𝑟𝜔𝑙𝑠𝑖𝑛(𝜃 − 𝜔𝑡)]
m
A rotating pendulum
y
Consider a pendulum of length 𝑙 moving on a massless ring
of radius r and constant angular velocity ω.
Apply Euler’s Equation
r
𝜕𝐿
𝜕𝜃
=
𝑑 𝜕𝐿
𝑑𝑡 𝜕𝜃
ωt
𝑚𝑟𝜔𝑙𝜃𝑐𝑜𝑠(𝜃 − 𝜔𝑡) − 𝑚𝑔𝑙𝑠𝑖𝑛 θ = 𝑚𝑙2 𝜃 + 𝑚𝑟𝜔𝑙𝜃𝑐𝑜𝑠 (𝜃 − 𝜔𝑡)- 𝑚𝑟𝜔2 𝑙𝑐𝑜𝑠 (𝜃 − 𝜔𝑡)
𝑚𝑙 2 𝜃 = 𝑚𝑟𝜔2 𝑙𝑐𝑜𝑠 (𝜃 − 𝜔𝑡) − 𝑚𝑔𝑙𝑠𝑖𝑛 θ
x
θ
𝑙
Solve for 𝜃
m
𝜃=
𝑟𝜔2 𝑐𝑜𝑠 (𝜃−𝜔𝑡) 𝑔𝑠𝑖𝑛 θ
−
𝑙
𝑙
Reduces to simple pendulum when ω = 0.
Lagrangian Benefits
Deals with energy which is invariant to coordinate transformations.
Can greatly simplify complicated systems.
Allows us to understand mechanical systems where all of the forces
cannot be stated explicitly.
Provides an alternative view of a mechanical system: rather than
seeing only cause and effect, we now see the purpose of the
system which is to minimize the action.
Sources
http://www.people.fas.harvard.edu/~djmorin/chap6.pdf
https://en.wikipedia.org/wiki/Leonhard_Euler (photo)
Marion, Thornton. Classical Dynamics of Particles and Systems, 4th
edition,1995. Harcourt Brace & Co.
http://physicsinsights.org/rotating_polar_1.html