INTERNET 2G - IST TEQUILA

Download Report

Transcript INTERNET 2G - IST TEQUILA

VTHD PROJECT
(Very High Broadband Network Service):
French NGI initiative
C. GUILLEMOT
FT / BD / FTR&D / RTA
christian.guillemot @francetelecom.com
Le présent document contient des informations qui sont la propriété de France Télécom. L'acceptation de
ce document par son destinataire implique, de la part de ce dernier, la reconnaissance du caractère
confidentiel de son contenu et l'engagement de n'en faire aucune reproduction, aucune transmission à des
tiers, aucune divulgation et aucune utilisation commerciale sans l'accord préalable écrit de France Télécom
R&D
France Télécom R&D
La communication de ce document est soumise à autorisation de FTR&D
© France Télécom - (Nom du fichier) - D1 -
07/07/2015
(Nom du fichier) - D1 - 01/03/2000
Presentation Overview
VTHD: french NGI initiative
project objectives
partnership
VTHD network
QoS engineering
rationale
service model
implementation issues
 Provisioning & traffic engineering
dynamic provisioning with optical networks
Interworking of IP and X-connected WDM networks
layer 2 traffic engineering
Conclusion
2
France Télécom R&D
La communication de ce document est soumise à autorisation de FTR&D
© France Télécom - (Nom du fichier) - D2 -
07/07/2015
VTHD Project objectives
To set up a strong partnership with higher education and research
institutions within the framework of french RNRT and european IST
networking development programms.
Open internet R&D
To develop new applications and to ensure that they can be put in use in
the broader global Internet.
To experiment optical internetworking with two jointed technological
objectives:
 to assess scalable capacity upgrading techniques
 to assess traffic management tools necessary to operate a QoS capable test-bed.
To deploy and operate a high performance network that provides nationwide
high capacity interconnection facilities among laboratories at the IP level
that supports experiments for new designs for networking.
with actual traffic levels consistent with interconnexion capacity.
3
France Télécom R&D
La communication de ce document est soumise à autorisation de FTR&D
© France Télécom - (Nom du fichier) - D3 -
07/07/2015
Partnership & Applications (1)
Partnership:
 France Telecom/FTR&D
 INRIA (Computering National Institute) & European G. Pompidou Hospital
 High Telecommunications Engineering Schools: ENST ; ENST-Br ; INT
Institut EURECOM (ENST + EPFL: Switzerland)
Data applications:
Grid-computing (INRIA) .
 Middleware platform for distributed computing
 High performance simulation & monitoring
3D virtual environment (INRIA)
Data base recovery, data replication (FTR&D)
Distributed caching (Eurecom Institute)
4
France Télécom R&D
La communication de ce document est soumise à autorisation de FTR&D
© France Télécom - (Nom du fichier) - D4 -
07/07/2015
Partnership & Applications (2)
Video-streaming
Video-on-demand, Scheduled live-transmission, TV broadcasting (FTR&D)
 MPEG 1: ~ 1 Mb/s
 MPEG 4: <~ 1 Mb/s (adaptative video-streaming, multicast)
 MPEG 2: ~6 Mb/s : high quality video  TV/IP
Real time applications
Tele-education (High Telecommunications Engineering Schools).
 Distant-learning,Educational cooperative environment, digital libraries
Tele-medecine (INRIA+ G. Pompidou hospital)
 High-definition medical images distant analysis & processing
 Surgery training under distant control
Voice over IP (FTR&D)
 PABX interconnection: E1 2Mb/s emulation
 Adaptative VoIP: hierarchical coding
Video-conferencing (FTR&D)
5
France Télécom R&D
La communication de ce document est soumise à autorisation de FTR&D
© France Télécom - (Nom du fichier) - D5 -
07/07/2015
VTHD network
 8 points of presence
interconnected by an IP/WDM backbone
aggregating traffic from campuses
using Giga Ethernet p2p access links.
Transmission resources (access fibers, long haul WDM optical channels)
supplied by France Telecom Network Division on spare resources.
VTHD Network management carried by FT operational IP network
staff in a « best effort » mode.
VTHD network usage
No survivability commitment ( neither for links nor routers faults)
Acceptable Usage Policy: notifiable « experimentations »
 partners are committed to have a commercial Internet access
6
France Télécom R&D
La communication de ce document est soumise à autorisation de FTR&D
© France Télécom - (Nom du fichier) - D6 -
07/07/2015
Network Architecture
Atrium
A weakly meshed topology
moving towards
• a larger POPs connectivity
• and peering with IST
Atrium network
Backoffice
8 POPs connected to 18 campuses
Backbone router
access router
7
France Télécom R&D
La communication de ce document est soumise à autorisation de FTR&D
© France Télécom - (Nom du fichier) - D7 -
07/07/2015
VTHD Routers & DWDM systems
Cisco
12000
VTHD: A multi-supplier
infrastructure
FTR&D
Cisco
6509
Avici
TSR
Juniper M40
GigaEthernet
STM1/OC 3
Juniper M20
FT/BD
2.5 Gb/s STM-16 POS
INRIA
2.5 Gb/s STM-16
POS
FTR&D
2.5 Gb/s
STM-16
POS
4 channel
STM-16
ring
FTR&D
ENST
INRIA
INRIA
FTR&D
INRIA FTR&D FT/BD
HEGP
ENST
INT
EURECOM
8
FTR&D
INRIA
France Télécom R&D
La communication de ce document est soumise à autorisation de FTR&D
© France Télécom - (Nom du fichier) - D8 -
07/07/2015
VTHD: Routing
FTR&D
INRIA
• IS-IS
AS
VTHD
• I-BGP4
Static
FTR&D
FTR&D
FTR&D
E-BGP4
INRIA
FTR&D
INRIA
HEGP INRIA
INT
ENST
ENST
FTR&D
Protection /IP rerouting
RENATER (~ 10 s)
9
Eurécom
INRIA
France Télécom R&D
La communication de ce document est soumise à autorisation de FTR&D
© France Télécom - (Nom du fichier) - D9 -
07/07/2015
QoS engineering: rationale
Context
VTHD: experimental & operational network
 that encompasses both the core network, the CPEs and the dedicated (V)LANs.
 that will progressively have FTR&D operational hosts reachibility (VPN engineering
permitting)
traffic: VTHD network
 interconnects distributed communities (FTR&D, INRIA, Telecom. Engineering schools)
 supports bandwidth demanding applications for bulk traffic
(metacomputing, web traffic, data base back up)
VTHD supports applications that need QoS guarantees :
 VoIP, E1 virtual leased lines, 3D virtual environment , video conferencing
Traffic load is expected to remain low in the VTHD core network with occasional
congestion events: a context indicative of actual ISPs backbones.
Objective
to experiment a differentiated QoS capable platform involving all
architectural components, even if their functionalities are basic.
10
France Télécom R&D
La communication de ce document est soumise à autorisation de FTR&D
© France Télécom - (Nom du fichier) - D10 -
07/07/2015
Expected VTHD bulk traffic
Bulk traffic is data traffic:
« web traffic »: INRIA WAGON tool
 WAGON is a software tool generating web requests
 Web browsing user behaviour is simulated using a stochastic
process & starting from data traces of actual web servers.
 Web servers generate actual back traffic to virtual users requests
 WAGON first objective is web server architecture improvement.
 Traffic /server:  160 Mbit/s (CPU limited), 7 servers.

Web
servers

Grid computing (INRIA):
Grid
cluster
1 Gb/s
1 Gb/s
 Parallel computing using a Distributed Shared Memory between
16 (soon 32) PC clusters.
 Processes (computing, data transfers) are synchronized by the
grid middleware.
 Data transfers are built on independent PC to PC file transfers
 Mean traffic level/ cluster transfer:  500 Mbit/s
42 Web clients
Data base recovery (FTR&D)
 80 Gigabyte transfers (~ few 100 Mb/s ?)
11
France Télécom R&D
La communication de ce document est soumise à autorisation de FTR&D
© France Télécom - (Nom du fichier) - D11 -
07/07/2015
Actual VTHD bulk traffic
12
France Télécom R&D
La communication de ce document est soumise à autorisation de FTR&D
© France Télécom - (Nom du fichier) - D12 -
07/07/2015
QoS Architecture components

  policy
 
FTR&D
directory
VTHD
directory manager
 
 
DNS/DHCP
:
Back Office
  VTHD
 BO

SLA
directory
QoS manager correlation
engine
OSSIP
Modelling
VTHD
PE
Switches FE , GE
VTHD CPE
:
Cisco 7206
 
Policy server

operational
interconnection
facility
: 
Traffic matrix

Policy server

PHB, AC engineering
VTHD
backbone

measurements
13
Building blocks integral
to QoS engine:
•VTHD service model
(PHB, Admission control)
• Performance metering
(QoS parameters measurem.)
• modelling (traffic matrix,
correlation engine)
•policy based management
(policies,COPS protocol)
•SLA
France Télécom R&D
La communication de ce document est soumise à autorisation de FTR&D
© France Télécom - (Nom du fichier) - D13 -
07/07/2015
VTHD backbone Service model (1)
 3 service classes mapped to EF and AF Diff Serv classes both for admission
control and service differentiation in the core network.
 Scheme applied at PEs ingress interfaces
 CPEs in charge of flows classification,traffic conditioning, packet marking.
Class 1: Expedited forwarding
 intended to stream traffic
 traffic descriptor: aggregated peak rate
 QoS guarantees: bounded delay, low jitter, low packet loss rate
 admission control: token bucket (peak rate, low bucket capacity)
–suitable to high speed links: individual flow peak rate is small fraction of link rate
so that variations in combined input rate remain low
Class 3: Best effort
 intended to elastic traffic
 no traffic descriptor, no admission control
 best effort delivery
14
France Télécom R&D
La communication de ce document est soumise à autorisation de FTR&D
© France Télécom - (Nom du fichier) - D14 -
07/07/2015
VTHD backbone Service model (2)
Class 2: Assured forwarding
 intended to elastic traffic that needs minimum
throughput guarantee
 traffic descriptor: ?
 QoS guarantees: minimum throughput
 admission control: based on number of active
METER
EF
-
Conforming
ABSOLUTE
DROPPER
QUEUE
ABSOLUTE
Feedback
AF1
flows & TCP .
ALG.
DROPPER
COUNTER
CLASSIFIER
QUEUE
SCHEDULER
 whatever the traffic profile, fair sharing of dedicated bandwidth
REMARKING
among flows ensures that flow throughput never decreases below
some minimum acceptable level for admitted flows (after J.W.
BE
ALG.
DROPPER
Roberts)
 assumes that TCP flow control is good approximation for fair sharing
 RED algorithm may improve fair sharing by punishing aggressive
Feedback
QUEUE
3
DS VTHD node
flows.
 Admission control should keep EF & AF cumulative traffic load below congestion and low
enough to enable the close loop feedback to take place properly .
15
France Télécom R&D
La communication de ce document est soumise à autorisation de FTR&D
© France Télécom - (Nom du fichier) - D15 -
07/07/2015
Closed loop operation
 loose traffic engineering
Closed Loop Network Operation
admission control: hose model
PolicyRepository
- based on local traffic profile and per interf. SLA
- not on global network status
- unknown local traffic profile per outgress /destination
Accounting
Policies
Service
Model
Routing
Policies
High-Level
Policy
Recalculation
STATE INFO
Dynamic
Device-Indep.
Recalculation
 traffic dynamics
service model to be re-engineered to meet SLAs.
- Relevant times scales (minutes to hours) are not
consistent with capacity planning.
16
Business Plane
LDAP
MODIFIED DEVICE
INDEPENDENT
VALUES
- Topology changes may require admission control &
Security
Policies
PERFORMANCE
INFO
Packet Flow
LDAP
Management Plane
PDP
STATE INFO
COPS(Report)
CONFIGURATION
COPS(Decision)
NetworkElement
IPPM
NEW POLICIES
Packet Flow
PEP
Network Plane
France Télécom R&D
La communication de ce document est soumise à autorisation de FTR&D
© France Télécom - (Nom du fichier) - D16 -
07/07/2015
Implementation issues
Admission control:
EF class: PIRC only supported on GE line cards on Cisco GSR
 PIRC is lightweight CAR: no access-group, dscp, or qos-group matching is
available; rule matches *all* traffic inbound on that interface.
AF class: status information on active flows not available
(classification and filtering rules enforcement at the flow granularity level with Internet II
Juniper processor)
 AF flows aggregate filtering based on token bucket descriptor
– appropriate token bucket parameters ?
Performance metering
On shelve tools for passive measurements at backbone border are not
available at Gb/s rate
Policy based management
COPS protocol not supported by Cisco GSR, Juniper M40, Avici TSR
& many other issues to be addressed: QoS policies, SLA/SLS definition,
correlation engine,….
17
France Télécom R&D
La communication de ce document est soumise à autorisation de FTR&D
© France Télécom - (Nom du fichier) - D17 -
07/07/2015
Dynamic provisioning &
optical networks
 IP pervasiveness & WDM optical technologies are key drivers for:
 high demand for bandwidth & transmission cost lowering.
which in turn lead to
exponential traffic growth and huge deployment of transport capacities
 Exponential nature of traffic growth shifts network capacity planning paradigm from:
fine network dimensioning to
coarse network dimensioning for pre-provisioned transport networks.
 Coarse network dimensioning and elastic demand for networking services shift the
business model from demand driven to supply driven which in turn calls for.
 new service velocity : fast lambda provisioning
 arbitrary transport architecture for scalibility & flexibility: shift from ring-based to meshed topology
 efficient and open management systems
 wider SLA capability
 rapid response to dynamic network traffic and failure conditions
18
France Télécom R&D
La communication de ce document est soumise à autorisation de FTR&D
© France Télécom - (Nom du fichier) - D18 -
07/07/2015
MP(Lambda)S optical networks
Soft-ware centric architecture leveraging on IP protocols
 Distributed link state routing protocol: OSPF, (PNNI)
 Signaling: Multi Protocol Label Switching (MPLS) / CR-LDP (RSVP-TE)
 : LDP queries OSPF for the optimal route, resources are checked prior to path set-up
IP control network
12
34
……..
……
12
34
……..
……
12
34
……..
……
Out of band
control channel
12
34
……..
……
« optical » X-connect
IP control plane interconnection facility decoupled from data plane.
 IP router address (control) + “IP” switch address (data) per X-connect.
19
France Télécom R&D
La communication de ce document est soumise à autorisation de FTR&D
© France Télécom - (Nom du fichier) - D19 -
07/07/2015
VTHD Configuration
Rennes
Paris AUB
Rouen
2
3
Sycamore
Xconnected
network
 Switch Capability LSA
Avici TSR
1
2
Sycamore opaque LSA features

Switch IP address

Minimum grooming unit supported by the node

Identified user groups that have reserved and
available grooming resources

User groups resources to be pre-emptable

Software revision
 Trunk Group LSA
3

Administrative cost of trunk group

Protection strategy for individual trunks within
trunk group

User group assignment of trunk group

Conduit through which the trunks run

Available bandwidth of the trunk group

Trunk allocated for preemption
Avici TSR
Paris STL
Paris MSO
20
France Télécom R&D
La communication de ce document est soumise à autorisation de FTR&D
© France Télécom - (Nom du fichier) - D20 -
07/07/2015
Dynamic provisioning for  trunks
TSR Composite Links: bundling of STM16 links
 Composite link is presented as a single PPP connection to IP and MPLS
 IP traffic is load balanced over member links based on a hash function
 Link failures are rerouted over surviving member links in under 45msecs
 may be faster than restoration at optical level
 Decoupling of IP routing topology (software/control plane) from router
throughput (hardware/data plane).
 Relevant to IP/WDM backbone router: number of line cards scaled on nbr
of  x nbr of fibres.
 - dynamic provisioning for composite link capacity
upgrading
 pre-provisined transport network: capacity pool
 standard or diversely routed additional link (packet ordering preservation)
 need signaling between router & optical X-connect.
21
France Télécom R&D
La communication de ce document est soumise à autorisation de FTR&D
© France Télécom - (Nom du fichier) - D21 -
07/07/2015
O-UNI signaling
UNI signaling :
Optical Network
UNI
-N
ONE: Optical
 Bootstrap the IP control channel
 Establish basic configuration
 Discover port connectivity
ND
UNI
-N
UNI
UNI
-C
ND
UNI
UNI
-C
Client
 Neighbor discovery
UNI UNI
-C
ND
ONE
Client

End points
Service bandwidth
Protection/restoration requirements
UNI
-N
Internal
Connectivity
ND
ND: UNI neighbor
discovery
 Connection creation, deletion, status enquiry
 Modification of connection properties

UNI
-N
Network Element
UNI functions :

UNI
Client
partnership
UNI
-C
Client
 OIF draft: oif2000.125.3
 signaling protocols: RSVP-TE or CR-LDP
 Avici & Sycamore first release scheduled next June
 VTHD experiment: Avici/FTR&D/Sycamore
 Address resolution
 registration
 query
 client addresses type: IPv4, IPv6, ITU-T
E.164, ANSI DCC ATM End System Address
address , NSAP)
 COP usage for UNI for outsourcing policy
provisioning within the optical domain
22
France Télécom R&D
La communication de ce document est soumise à autorisation de FTR&D
© France Télécom - (Nom du fichier) - D22 -
07/07/2015
Conclusion
Where do we stand now
French partnership kernel.
IP network deployment completed
Partners usage and related applications rising up.
Sycamore platform lab tests.
What ’s to come
VPN service provisioning (first IPSEC based then MPLS based) to
enable secured usage from « regular » hosts.
QoS capable test-bed.
IPv6 service provisioning.
New applications/services support within the RNRT/ RNTL or IST
framework ?
23
France Télécom R&D
La communication de ce document est soumise à autorisation de FTR&D
© France Télécom - (Nom du fichier) - D23 -
07/07/2015
Thank you!
24
France Télécom R&D
La communication de ce document est soumise à autorisation de FTR&D
© France Télécom - (Nom du fichier) - D24 -
07/07/2015