Transcript TRI P

Tests of Fundamental Symmetries
Fundamental
Interactions
at Low Energy
The TRIP facility
•Fundamental interactions and symmetries
•CP & T and CPT, The Standard Model and the Universe
•Time-reversal violation and electric dipole moments
•Time-reversal violation and beta decay
H.W. Wilschut
•How to do the experiments: TRIP
(Trapped Radioactive Isotopes lab’s for fundamental Physics)
Symmetries and Models
• The ‘fundamental’ (discrete) symmetries
Parity (the world in a mirror would work)
Charge conjugation (a universe of antimatter would be OK)
Time reversal (local OK but enthropy increases)
They are not symmetries of the Standard Model
CPT would be really fundamental (Lorentz invariance)
CP and T are very good in atomic and nuclear physics
• Search for Time Reversal Violation (TRV) at low
energy are direct tests of the Standard Model
Searches for ‘new physics’
at
low
energy
neutrino physics
oscillations, absolute mass, neutrinoless double beta decay
atomic physics
parity non-conservation
weak charge
anapole moment = nuclear physics
nuclear physics
beta-decay
V-A, T, S, P
Vud,unitarity CKM
forbidden moments
electric dipole moments
NUPECC long-range report (fundamental interactions)
KVI choice: 1) edm (TRV)
2) beta-decay (correlations, including TRV)
TRV and CPV in the Standard Model
__
K0  K0 degenerate
K1  K2 CP eigenstates
KS  KL actual states CPV
__
CP or T violation in K0 K0
d
Vxd
u,c,t
s
__
K0
CKM matrix
K0
_
s
W
W
___
u,c,t
_
d
__
Similar for B0 B0
Now know CPV phase CKM
Additional sources CPV may explain matter – anti-matter asymmetry
lets try to find them……
Time reversal violation and the
Electric Dipole Moment
J
d
time
time
•any particle will do
• dn  0.6 10-27 em
• de < 1.6 10-29 em
• de (SM) < 10-39 em
•QM: J//d
• find suitable object
• Schiff
• need amplifier
• atomic (Z3)
• nuclear
• suitable structure
Consider all nuclides
EDM violates parity and time reversal
Electric dipole moments exist !?
they
are listed
in handbooks
Feynman
lectures
III chapter
9 will give the answer
|1
Energy
more?
p
J1=J2
|I
p
|1
split  tunnel probability
0
Electric field
|2
p

|II
-p
The definite energy eigenstates |I / |II = 1 (|1  |2)
2
have no dipole moment
|2
Adding a fundamental dipole
p
11  0  2222
12    12
|1 d
J
p  |ez|   |ez|
|2
d
p
A 
 E0  

H ij  
E0   
 A
pI  I|ez|I  0
New states L and S
ES,L=   (2 +
 2)
Diagonalizing
 E0  A

H ij  
  A E0 
New states I and II
EI,II =  
I
1  1 1 1 
  

 
2   1 1 2 
 II 
 S   cos α sin α  I 
   
 
 L    sin α cos α  II 
pS = S|ez|S = p sin 2 = p /A
p2
5
Enhancement factor pS /d 

10
Aa3
Nearly degenerate states with opposite parity allow to observe TRV
EDM: What Object to Choose ?
205Tl:
d = -585 de
199Hg:
d  nuclatom
Ra: Ra/Hg=(10>1)(10>3)
Theoretical input needed
EDM Now and in the Future
NUPECC list
199Hg
1.610-27
•
•
Radium potential
Start TRIP
de (SM) < 10-37
TRV in -decay:
Correlation measurement
• R and D test both Time Reversal Violation
• D  most potential
• R  scalar and tensor (EDM, a)
• technique D measurements gives a, A, b, B
But first something simple…………
Weak interaction made simple
-decay : 0+ 0+ ( Fermi)
neutrino
electron = 
1
neutrino
2
electron
Superallowed Fermi decay pure Vector: case 2
a little case 1: means Scaler component = BSM
Structure of the weak interaction
Of all possible interactions only few are allowed
characterization by the Dirac matrices involved
1
5

 5 
S
P
Scalar
Pseudo Scalar
V
Vector (GV)
A
Axial Vector (GA)
        T
Tensor
Structure is V - A=
left handed interaction
“beyond” =
right handedness
new bosons
more Higgs’s or…..
=
S, P or T
“The Nucleus as micro laboratory”
Fermi transitions 0+ 0+

N
+
N’

e,
+
Gamow-Teller 1+ 0+
Decay probability  (phase space) (nuclear structure) (weak interact)
The role of (optical) trapping
Optical trap sample
• isotope selective, spin manipulation
• point source, no substrate
• recoil (ion) mass spectrometry
From KVI atomic physics: He2+ + Na
S. Knoop
Ideal environment for precision experiments
1 a.u.=15 AeV
Correlation experiments
Setup at TRIUMF (Behr et al.) for 38mK (t1/2=0.93 s; 0+  0+)
Typical measured spectrum (Behr)
1.5 s 6 AeV
Current value aF=0.992(8)(5)
improved statistics ? (3)(3)
current limitation:  response
other attempts: aGT
6He at LPC/GANIL
with Paul trap
Status and Future of D coefficient
•D in neutron (-0.61.7)10-3
•D in 19Ne < (48)10-4
Weak magnetism
•DWM (19Ne) = 2.610-4 pe/pmax
•With measurement of D(pe)
momentum dependence two
orders of magnitude to be
gained.
•D in  =0.110.10
• KVI goes for
• 21Na (3/2+3/2+ ; t1/2=22.5 s)
• 20Na(2+ 2+ + / ; t1/2 =0.5 s)
( Rate of in-trap decays 105/s)
Theory
D  Im (CVCA*)
CKM
 10-12
:
:
Susy
10-7-10-6
LR sym
10-5-10-4
exotic ferm.
10-5-10-4
lepto quark
present limit
(1/2+1/2+ ; t1/2=17.3 s)
23Mg (3/2+3/2+ ; t =11.3 s)
1/2
19Ne
The effect of the FSI
(Theory group/masters thesis Marc van Veenhuizen)
D=0 if all formfactors are real
finite D due to
weak magnetism
FSI and TRV
can be disentangled
TRIP - Trapped Radioactive Isotopes:
-laboratories for fundamental Physics
Facility to
• produce
 AGOR
• select
 Separator
• collect
• hold
Traps
• manipulate
radioactive nuclei,
to study physics beyond the Standard Model

TRIP
The double mode separator
Target
DD
QD
QD
chamber 2
QD
DD
Gas-filled
Fragmentation
recoil mode mode
Target
chamber 1
Gas cooler,
RFQ
Low
energy
beam
Traps
Beam rigidity B
Product rigidity B
Angle, vert., horiz.
Momentum Acceptance
Resolving Power
Dispersion
Fragmentation
Gas-filled
recoil separator
separator
3.6 Tm
3.0 Tm
30 mrad
2.5%
1000
2000 (no
gas filling)*
2.0 cm/%
3.8
* In the gas-filled mode the resolving power
is limited by multiple scattering in the gas
TRIP
QD
AGOR
beam
Catching the fast ions (ouch!)
• new RIB facilities
propose gascatchers
• He gas stops products
as 1+ ions (ionization
potential difference)
• Does it work?
• It works in Argonne
• more input needed
Applied physics: AlCatraz
KVI atomic physics project
•
•
•
•
•
•
•
The abundance of 41Ca
4 stages
laser focusing
Zeeman slower
optical molasses
MOT (ready)
10 orders of
magnitude to go
410-5
Summary and outlook
Fundamental
Interactions
-decay
Nuclear structure
- and -decay
condensates
Atomic moments
Electric dipole
Nuclear
physics
Nuclear moments
very rare isotope
detection
Applied
physics
Atomic structure
chemistry
Atomic
physics
TRIP Group at KVI
Scientists:
Research technicians:
G.P. Berg
U. Dammalapati
P.G. Dendooven
O. Dermois
M.N. Harakeh
K. Jungmann
A. Rogachevskiy
M. Sanchez-Vega
R. Timmermans, (theory)
E. Traykov
L. Willmann
H.W. Wilschut
you? (Graduate students)
you? (Post docs)
L. Huisman
H. Kiewiet
M. Stokroos
TRIP
collaborations:
NIPNET
IonCatcher
KVI atomic phyisics
R. Hoekstra
R. Morgenstern
S. Knoop
S. Hoekstra